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Abstract Our goal in this paper is to propose a Computational Thinking Pedagogical
Framework (CTPF), developed from constructionism and social-constructivism theories.
CTPF includes four pedagogical experiences: (1) unplugged, (2) tinkering, (3) making,
and (4) remixing. Unplugged experiences focus on activities implemented without the use
of computers. Tinkering experiences primarily involve activities that take things apart and
engaging in changes and/or modifications to existing objects. Making experiences involve
activities where constructing new objects is the primary focus. Remixing refers to those
experiences that involve the appropriation of objects or components of objects for use in
other objects or for other purposes. Objects can be digital, tangible, or even conceptual.
These experiences reflect distinct yet overlapping CT experiences which are all proposed
to be necessary in order for students to fully experience CT. In some cases, particularly for
novices and depending on the concepts under exploration, a sequential approach to these
experiences may be helpful.
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A Pedagogical Framework for Computational Thinking

Technology is interwoven in virtually all aspects of daily living including that of
children. In addition to technology being embedded into everyday tools (e.g., commu-
nication devices, microwave ovens, cars, alarm clocks, etc.), computers and mobile
devices for both personal and educational use are common in homes and in schools. In
Canada, 83% of homes have Internet access and 97% of these homes report having
high speed access (Statistics Canada 2013).

Access to the Internet through personal and mobile devices has made a global
knowledge network widely accessible. This access has facilitated information sharing
that enables users to be both consumers and developers of knowledge. The implications
and the potential influence of this duality of consumer/developer are not being
underestimated by policy makers and curriculum leaders. There is a growing recogni-
tion across many jurisdictions worldwide that to function, problem-solve, engage in
digital innovation, and advance a society already heavily technology-based, individuals
require some level of Bcomputational thinking^ (CT) and this requirement is often
cumulative in that newer technologies require an understanding of older technologies.

CT is Ban approach to solving problems, designing systems and understanding
human behaviour that draws on concepts fundamental to computing^ (Wing 2006,
2008, p. 3717). CT can also be viewed as thinking algorithmically by using principles
from computer science as a guiding structural and sometimes metaphorical framework
(Shodiev 2013). Hoyles and Noss (2015) define CT as entailing abstraction (seeing a
problem at different levels of detail), algorithmic thinking (the propensity to see tasks in
terms of smaller connected discrete steps), decomposition (solving a problem involves
solving a set of smaller problems) and pattern recognition (seeing a new problem as
related to problems previously encountered).

CT involves concepts (e.g., loops, conditions, subroutines) and practices (e.g.,
abstraction and debugging) primarily from computer science which are shared across
other disciplines such as science, mathematics, social science, biology, language arts
and engineering (Kafai and Burke 2013; Lye and Koh 2014). These disciplines are also
simultaneously computational in that digital technology is increasingly necessary for
each discipline (Weintrop et al. 2016). Despite the obvious relevance of CT to computer
science, scholars argue that CT needs to be taught in disciplines outside of computer
science beginning in kindergarten (Barr and Stephenson 2011; Yadav et al. 2011). CT is
proposed to be Ba powerful cognitive skill that can have a positive impact on other
areas of children’s intellectual growth^ (Horn et al. 2012, p. 380); therefore, according
to Wing (2006), it should be added Bto every child’s analytical ability^ (p. 33).

The intense interest in CT has resulted in many jurisdictions worldwide proposing
that CT is introduced either as a stand-alone course or a cross-curricular expectation.
For example, England has made the teaching of Bcoding^ (or computer programming)
part of the national curriculum in elementary schools and mandatory starting in grade
one (Berry 2013; Government of England 2013). Coding is one example of CT and
arguably the most popularized example to date. Finland will be introducing a manda-
tory elementary CT curriculum starting in 2016, and Estonia has had curriculum in
place starting in grade one for all students since 2013 (SITRA 2014). Similar trends are
also being observed in some parts of Canada (e.g., British Columbia Government 2016;
Province of Nova Scotia 2015) and the United States (e.g., The White House 2016).

Digit Exp Math Educ



The current focus on CT can be viewed as a renewed focus. The historical origins of
children participating in CT can be traced back more than thirty years to the visionary
work of the late Seymour Papert who developed the software LOGO to enable children
to engage in computer programming (Papert 1980). It is worth contemplating why
Papert’s pioneering work was not enduring or widely adopted at the time (Pierce 2013).
Quite simply, technology has evolved to a level where there is an inescapable daily
dependence or interaction for most people. As one online article proposes in its title
Bthe future will be built by those who know how to code^ (SITRA 2014). Additionally,
much simplified programming languages, utilizing block-based click and build com-
ponents, have made participation in CT and coding much more accessible. It is this
reality that suggests that the renewed focus on coding will have longevity and will
increasingly see CT inscribed in education policy through mandatory curricula.
Consequently, not including coding for all children can be potentially undermining
the extent to which participation in such future building is limited (Kafai 2015).

Our goal for this paper is to propose a CT Pedagogical Framework (CTPF), which is
rooted in constructionism (Papert 1980, 1987; Papert and Harel 1991) and social-
constructivism theories (Vygotsky 1978). CTPF, as we conceive of it, includes four
pedagogical experiences: (1) unplugged, (2) tinkering, (3) making, and (4) remixing.
The CTPF was developed by the authors and with the support of other scholars (see
acknowledgment) in a working group focused on CT pedagogy at a symposium on CT
(Namukasa et al. 2015). During the working group, the four experiences were identified
in the available literature and then explored through activities.

The working group included novices and experts (teachers, graduate students, and
researchers) in CT. Central to our discussions and explorations were the following
questions: (1) Was a particular experience appropriate for a novice? (2) Were some of
the experiences more cognitively or technologically demanding? And (3) How do these
experiences relate to one another? The refinement the CTPK continued beyond the
symposium through dialogue and our own individual explorations with each of
the experiences and the framework. For some of us, the exploration occurred at
the individual level. For others, the exploration happened in pre-services set-
tings and others explored the experiences in authentic professional development
contexts. Many of us explored the experiences and the framework with children
in classrooms.

This further exploration inspired a revision in the ordering of the experiences, a
clarification in role of using the experiences sequentially, and a reconsideration of the
role of unplugged experiences. For example, our early thinking about the CTPF
considered these experiences instead as Bphases^ which could occur sequentially
(i.e., first unplugged, then tinkering, then making, and finally remixing). In some cases,
particularly for novices and depending on the concepts under exploration, this may be
the case. Unplugged experiences, as we explain shortly, may be useful preceding any of
the other experiences.

Consequently, the proposed CTPF should instead reflect distinct yet overlapping CT
experiences which we propose are all necessary in order for students to fully experience
CT. We emphasize up front that our proposed framework is intended to contribute to
the early discussions on CT and pedagogy. The need for empirical data about efficacy
of the framework is necessary. The proposed CTPF is an outgrowth of the available CT
pedagogy research – which is widely agreed to be in its infancy. While we believe that
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the proposed CTPK has great potential, there may be in fact other experiences or other
sequences of the experience that may be more powerful for learning CT and this is may
be discovered with further research.

Our disciplinary lens used to exemplify the proposed CTPF is mathematics given the
obvious and numerous connections between mathematical and CT, particularly in the
areas of problem-solving, modeling, and analyzing (Gadanidis 2015; Sneider et al.
2014). This is not to suggest that CT is only relevant to mathematics education. CT can
also be naturally extended across other curricula too (Horn et al. 2012). As noted
earlier, some jurisdictions are taking a cross curricular approach because of the
relevance of CT to other disciplines (Kafai and Burke 2013; Lye and Koh 2014). We
propose that the CTPF may be useful for learning CT across the elementary and
secondary levels of education and particularly useful for novice learners, including
pre-service and in-service teachers.

Numerous frameworks for CT have been proposed but, to the best of our knowl-
edge, frameworks that describe pedagogy have not been established yet. For example,
Brennan and Resnick (2012) describe three Bdimensions^ of CT which include:
computational concepts, computational practices, and computational perspectives.
These dimensions capture the what, how, and the why of CT without fully
addressing the actual teaching of CT. Similarly, Weintrop et al. (2016) propose
a Btaxonomy of practices^ which include data practices, modeling and
simulation practices, computational problem solving practices, and systems
thinking practices. These practices describe CT in terms of actions. Resnick
et al. (2005) describe Bdesign principles of tasks^ which assist greatly in
thinking about why a particular task is CT and the appropriateness of a task to a
learning goal or teaching objective. Resnick et al. (2009) also introduce the practices
of tinkering and remixing, terms which we also use to describe pedagogical experiences.
Our view of tinkering and remixing takes a distinctly teaching lens that focuses on
learning rather than only the action.

Theoretical Perspectives

The proposed four pedagogical experiences are deeply rooted in constructionism
learning theory, first proposed by Papert (1987), and Vygotsky’s (1978) Bzone of
proximal development.^ Papert’s theory of constructionism posits that learners con-
struct internal representations to make sense of their environment and to develop
knowledge. Learners build on existing knowledge through student-centered and
inquiry-based active learning.

Papert and Harel (1991) makes clear that constructionism is more complex than
simply Blearning-by-making.^ Papert explains constructionism in his National Science
Foundation proposal as follows: BWe take a view of learning as a reconstruction rather
than as a transmission of knowledge. Then we extend the idea of manipulative
materials to the idea that learning is most effective when part of an activity the learner
experiences as constructing a meaningful product^ (Papert 1987, Abstract). The learner
plays an active and primary role, rather than the teacher, in constructing their knowl-
edge and this is the central consideration for teachers as they guide instructional
activities in the classroom.
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Papert and Harel (1991) perspective is fundamentally multi-modal in that internal
representations are constructed from engagement with artifacts in the real world and
that may include sound, text, imagines, motion, and so forth. We also take this broad
view of artifacts in our definition of Bobjects^ which is frequently used in describing
and illustrating the proposed CTPF. As used in this context, object is meant to describe
something that is digital, tangible, or even conceptual. For example, a block of
computer programming is a digital object. A segment of a structure or building blocks
are examples of tangible objects. A variable or formula can be viewed as a conceptual
object. Some objects can be both tangible and digital (e.g., robots) or digital and
conceptual (e.g., a formula in a computer program). In the next sections, examples of
objects are provided to illustrate the four experiences in the CTPF.

Vygotsky (1978) defines zone of proximal development (ZPD) as Bthe
distance between the actual development level as determined by independent
problem solving and the level of potential development as determined through
problem solving under adult guidance or in collaboration with more capable
peers^ (p. 86). Consequently, learning is viewed as social, collaborative, and
interactive. The four pedagogical experiences partially reflect a developmental
continuum, or zones of proximal learning, whereby each pedagogical experience
may reflect an increasingly more challenging cognitive demand level than the
previous pedagogical experience for learners. This developmental perspective
should not be interpreted as suggesting new learning can only occur within one
particular CT experience or another. Nor should these experiences be viewed as
rigidly sequential; the sequences of the experiences may vary or even be
iterative.

New concepts can still, of course, be introduced during any aspect of the CTPF;
however, the actual tasks associated with of some of the proposed experiences in the
CTPF, such as making and remixing require, in our opinion, a higher level of
foundational understanding and skill level of CT than the unplugged or tinker-
ing experiences. For example, in the making experience, some understanding of
computer programming or coding is necessary to write computer programs
anew. Likewise, the essential skills necessary to remix were likely first learned
through tinkering (e.g., applying simple modifications to existing computer
programs). This is not to say that there may not be individuals who engage
in computer programming, for example, without any prior knowledge. Indeed,
the experiences are perceived as distinct but overlapping (see Fig. 1). Our point
is that to develop CT, approaching learning sequentially through these four experi-
ences could potentially be helpful – particularly for teachers and for students with
limited CT background, but exposure to all four experiences is necessary to fully
experience CT.

Less obvious about the proposed CTPF at the onset is the social aspect of
Vygotsky’s ZPD. To explain our view, across each of the experiences we
outline shortly the opportunity for engagement with Bother^ either occurs
frequently as part of the experience (e.g., building activities), is often a feature
of the experience (see unplugged), or may be implicit in the experience. For
example, with remixing, students appropriate (or Bhack^) on others’ work and
this is an opportunity to both learn and build knowledge. Consequently, social
is an important aspect of the CTPF.
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Four Pedagogical Experiences

Unplugged

Unplugged experiences focus on CT activities that are implemented without the use of
computers. Barriers such as learning a computer programming language or limited
access to computers are potentially avoided, particularly for novices and younger
students (Curzon 2013; Nishida et al. 2009). Consequently, it is an accessible way to
introduce children to CT (Curzon et al. 2014; Thies and Vahrenhold 2013). These
experiences release Bstudents from the implementation details required to produce a
working computer program^ (Lamagna 2015, p. 52).

Unplugged experiences are often first and foundational in learning CT because they
require possibly the least amount of cognitive demand and technical knowledge. This is
not to say that unplugged experiences cannot be cognitively demanding. Rather, the
purpose of unplugged experiences are to introduce preliminary and overlapping con-
cepts related to CT that can then be explored in a more sophisticated way, either
conceptually or technologically, during the other experience. Like the other three
experiences, unplugged experiences may also be repeated prior to any of the other
experiences to introduce foundational concepts without the use of a computer. For
example, a teacher may do an unplugged activity prior to making experiences in order
to introduce a relevant new concept without the use of technology.

Unplugged experiences are often collaborative and kinesthetic (LeMay et al. 2014;
Nishida et al. 2009; Taub et al. 2012). From a design perspective, unplugged experi-
ences also have many of the foundational design principles outlined by Resnick et al.
(2005) that include: multiple access points for students, the potential to build in
complexity within the task, they are simple, and they support explorations.

With unplugged experiences, students are able to witness and experience the process
required to complete a task, allowing them to put CT into a relatable context (Curzon
et al. 2014). Not only does incorporating unplugged experiences help to make chal-
lenging computer science concepts more simple to understand, students enjoy working

Remixing 

Making

Tinkering

Unplugged

Fig. 1 Four pedagogical experiences
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collaboratively and their motivation and interest in the content appears to increase
(Curzon et al. 2014; Lamagna 2015). Lambert and Guiffre (2009) found that unplugged
experiences improved fourth grade students’ confidence in mathematics and their
perceived cognitive skills.

According to Nishida et al. (2009), unplugged experiences can be taught in any
location. However, if done in a room with computers, students might see the unplugged
activity as being pre-amble to working on computers, reducing their focus on the task.
Curzon (2013) states that Blinks from the activities to CT concepts need to be explicitly
drawn out^ (p. 48). Unplugged experiences should be designed to be student-directed,
kinesthetic, easily implemented, game-based, and with embedded challenges (Nishida
et al. 2009). Nishida et al. (2009) also recommends teaching the unplugged experiences
within one lesson, rather than spreading it out over several days.

Rather than creating new unplugged experiences, teachers can use existing lessons
(i.e., such as those related to sorting or those using Venn Diagrams) to incorporate CT
thinking. The challenge in using existing material for teachers is being able to identify
the CT in the activity or being able to imbed explicitly CTwithin the task where it may
not have previously existed.

One example of an unplugged activity is the sorting of shapes based on properties
and attributes using a simple if-then decision tree structure. Sorting is an example of a
computational algorithm whereby properties or attributes form the rule for placing an
object in one collection versus another (Namukasa et al. 2015). This activity is only
requires limited prior knowledge of mathematics or computer programming, and can
lead to the development of more advanced mathematical and computer programing
concepts such as the development of sorting algorithms (Papert 1980; Resnick et al.
2005). Objects in an unplugged context can be tangible or conceptual, rather than
digital or computer-based. Unplugged experiences can also be coupled with any of the
other experiences described shortly.

Another good example of an unplugged experience is found in this special volume.
Gadanidis et al. (2016) describe an unplugged coin toss activity with grade one students
that explores the Binomial Theorem (see paper and Fig. 6). In this activity, students are
asked to record and compare the number of outcomes following each of the paths (1 to
6). The activity explores probability, estimation, and conjecturing. It provides concrete
and kinesthetic experiences for the child and allows for foundational knowledge to be
developed. It reflects Weintrop et al. (2016) data practices, modeling and simulation
practices includes several of the design principles identified by Resnick et al. (2005),
including: supportive of many levels of learning, supports collaboration, and makes a
mathematical concept very simple and accessible.

Tinkering

Tinkering experiences primarily involve taking things apart and engaging in changes
and/or modifications to existing objects. These objects can be building blocks, puzzles,
digital or electronic simulations, programming code, and so forth. During tinkering,
students are not constructing an object, digital or otherwise, but rather exploring
changes to existing objects and then considering the implications of the changes.
These experiences may require students to use some of the foundational concepts
and skills learned during unplugged experiences, but new concepts and skills may also
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being introduced. Like unplugged experiences, tinkering experiences can occur prior to
any of the other experiences or in sequence following unplugged experiences if
necessary for novice learners.

The goal of tinkering experiences is to provide a context for exploring incremental
modifications, without the additional cognitively demanding challenge of actually
building the object. Application, simulation, and problem-solving are the foci. These
experiences ultimately explores the Bwhat if^ (e.g., What if I change this part
of the code? What if I remove this part of the structure? What if I add this to
the object?) moments of learning that yield insight, and often more questions
(Sneider et al. 2014).

A good example of tinkering is modifying existing computer programming code.
Any computer programming when executed or run is ultimately manifested in a
physical sense (e.g. sound, lights, movement, etc.). This hands-on aspect of tinkering
with computer programs or code allows for students to easily see the connection
between changes in the program and the outcome and even allows students to imme-
diately know an error has occurred when the program does not execute or run.

Widely used and known visual-graphic computer programming software for chil-
dren and novices is Scratch (Lifelong Kindergarten Group at the MIT Media Lab 2016;
Resnick et al. 2009; Smith and Neumann 2014; Watters 2011a). The concept of
Btinkering^ underpins this popular software and makes it highly accessible even to
young students (Resnick et al. 2009). A block coding method is used whereby students
combine programmed blocks (e.g., run, repeat, stop, move, etc.) together to construct
an executable code. Scratch is intended to be highly interactive and accessible: BJust
click. .. and it starts to execute its code immediately. You can even make changes. .. as it
is running, so it is easy to experiment with new ideas incrementally and iteratively^
(Resnick et al. 2009, p. 63). While children can use Scratch to Bmake^ during making
experiences described next, they can also easily explore pre-existing block codes to
investigate CT concepts. Smith and Neumann (2014) found that Scratch supports
students by drawing connections between physical actions on the screen and com-
mands and helps them Breason about and predict . . . actions, leading to a more nuanced
understanding of the attributes of transformations^ (pp. 186–87).

Geometry is ideally explored through software such as Scratch during tinkering
experiences. Teachers can select premade coding blocks from the extensive online
library to allow students to explore concepts such as properties, attributes, rotations,
reflections, and translations by making incremental or small changes to existing
programs. One simple example of this is modifying lines of code to produce different
outputs. For example, students are provided with the script for a square and are asked to
make modifications to the square script to create a rectangle (see Image 1). Tinkering in
this activity involves modeling and simulation practices (Weintrop et al. 2016) and
supports exploration (Resnick et al. 2009; Resnick et al. 2005).

By tinkering with premade programs, students can focus on the lines of code where
the mathematics is most evident. Students can hone in on the variables and math
formulae, and through adjusting code, they can immediately discover what their
adjustments will do. By doing so, students can appreciate that Bcoding offers new
ways of experiencing, representing and investigating mathematics concepts and
relationships^ (Gadanidis 2015, p. 162). From a pedagogical perspective, the focus
on the Bwhat if^ provides a context for conjecturing, problem-solving, generalizing,
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and predicting – all which can lead to deeper mathematical understanding.
Opportunities for facilitating learning are extensive during tinkering experiences.

We should make clear that our view of tinkering experiences align with many of the
sharing practices defined as Bremix^ by Scratch (see https://wiki.scratch.mit.
edu/wiki/Remix). This is different than our Bremixing^ described shortly. Scratch’s
remix, for the most part, involves sharing and tinkering with existing code and we see
this as requiring a significantly lower cognitive demand level than our view of remixing
or even making.

Making

Papert (1980) described learning to consist of building up a set of materials and tools
that one can handle and manipulate (p. 173). Papert’s views are the essence of making
experiences. These experiences are different than tinkering in that objects are fully
constructed anew rather than pre-existing. Making experiences, depending on the
objects used, require deeper knowledge than tinkering where objects for the most part
are already constructed or pre-existing.

In making experiences, students are required to problem-solve, make plans, select
tools, reflect, communicate, and make connections across concepts. Often making
involves practices such as prototyping and testing. The knowledge and understanding
that is developed in this these pedagogical experiences could involve the development
of foundational skills but for the most part, makes use of foundational skills instead.
Students have the potential to learn as they construct and while they share what they do,
what they have made, and how they have made it (Dougherty 2012). A Bmaker^ or
Bmaker space^ are other popularized terms which refers to individuals or groups of
people who build things and locations where this building occurs.

Making experiences can occur with any objects, including those that are explicitly
intended for building such as Lego or even household objects. In these instances the
making is unplugged. Or, making experiences can occur through computer programing.
These experiences can also occur by digitizing objects or through digital fabrication
often referred to as Bdigital making^ (Strawhacker and Bers 2015). Digital making
refers to the interactions between the virtual and the real world through the use of

Image 1 Draw a rectangle using Scratch. Source: http://researchideas.ca/wmt/c6b1.html (Reproduced with
permission)
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intuitive interfaces that use sensors, micro-controllers, motion, sound, light, as well as
other tangible materials to interact with the environment (Bowler 2014; O'Sullivan and
Igoe 2004).

Sometimes, digital making is also referred to as Btangible programming^ (or,
physical computing, digital fabrication or graspable user interfaces). Digital making
is simultaneously a tangible representation and digital of CT that moves beyond text-
based computer programming and coding. Object-oriented programming languages are
often used for digital making which counteract the traditional procedural, highly
structured and complex, syntax-based computer programming; thus, they are more
accessible for students (Govender and Grayson 2008). Object-oriented programming
first creates objects through programming where the most abstract case is first devel-
oped and then can be subsequently tinkered with or remixed (see next section) to create
objects where non-essential characteristics/behaviours can change to get variations.
Object-oriented programming languages are proposed to facilitate learning CT concepts
such as sequencing, recursion and debugging (Przybylla and Romeike 2014), and to be
of use in learning mathematics (Parker 2012; Scarlatos 2006).

Digital making Bencourages students to combine multiple ideas into a cohesive
process, organize their understanding in new ways, and ‘debug’ understandings in their
instructions to produce something unexpected^ (Wilkerson-Jerde 2014, p. 102). They
are a major part of the re-emergence of programing for children and youth because they
have the potential to make abstract programming concepts and ideas more physical and
accessible for younger children and more amenable to social learning. Digital making
also resonates with traditional mathematics manipulatives such as blocks, counters and
fraction bars, which have shown to be supportive of young children’s learning and
creative expression (Strawhacker and Bers 2015, p. 298).

Digital tangibles, the product of digital making, include but are not limited to digital
textiles (Lovell and Buechley 2011), digital games, programmable blocks (Kwon et al.
2012), tangible avatars/digital puppets (Liu et al. 2012), reactive materials, robotics
(Kazakoff et al. 2013; Sullivan et al. 2013), or simply tangible algorithms. Tangible
programming was the key focus of Papert’s (1980) seminal contributions to the field.
Through Papert’s LOGO, Children learned to program both Bscreen^ turtles and
Bfloor^ turtles (Papert 1980). Papert referred to these digital turtles as Bobjects-to-
think-with … in which there is an intersection of cultural presence, embedded knowl-
edge, and the possibility of personal identification^ (p.11).

While most research in this new area has been innovation-oriented, a few studies
have investigated the influence of digital tangibles on learning. Digital tangibles have
been observed to be as effective as graphical user interfaces for learning programming
languages, and more helpful in the early stages of learning programming concepts for
kindergarteners (Kazakoff et al. 2013; Kwon et al. 2012; Strawhacker and Bers 2015;
Sullivan et al. 2013), and for children with certain special needs (Farr et al. 2010).
Digital tangibles also promote deeper engagement and prolonged focus when exploring
concepts and have been shown to be more appealing to children than solely coding
(Horn et al. 2012, p. 379).

Digital tangibles have also been linked to improved interest levels of first year
computer programming students (Corral et al. 2014) and in-service and pre-service
computer science teachers (Govender and Grayson 2008). Bers and Horn (2010)
observe that young children as young as four years old are able to understand the
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basics of programming and can build and program simple robotic manipulatives
through digital tangibles,. Digital tangibles were also more appealing to children
younger than 16 years in a museum setting and equally appealing to both boys and
girls in contrast to visual-graphic programming which appealed more to boys (Horn
et al. 2012). In this study, however, the levels of understanding about programming
concepts gained through tangibles and graphical interfaces did not differ.

Several tangible digitals are adaptable to teaching mathematical concepts such as
counting, volume, surface area, location, movement, measurement, time, distances,
angles, and so forth. The use of digital tangibles creates a context that is both
exploratory and social. Students are able to program digital objects, such as robots,
digital blocks or digital characters, to physically embody concepts. Sphero (2016), a
ball-shaped robot, for instance, that can be programmed to move around a space (i.e.,
classroom, table-top, obstacle course, etc.) using several open source programming
applications that utilize a visual-based block programming and are downloadable onto
mobile devices such as tablets and cell phones (see Image 2). Programming movement
for Sphero involves thinking about angles, lengths, times, distances, measurement, as
well as proportional reasoning. Students could practice transformation geometry con-
cepts by programming Sphero to navigate a maze marked on the floor, in manner
similar to navigating a maze in a digital object on a screen.

Another example of digital making can be seen with the use of Arduino (2016)
technology. According to Hughes et al. 2016 in this same special issue, Arduino Bis a
microcontroller-based digital circuit making kit along with a coding environment for
writing programs that can be transferred to the microcontroller^ (p. 6). An example of a
making activity that has deep mathematical knowledge is programming patterns on a
bicolour grid using the Arduino to illuminate LED lights (Hughes et al. 2016; Yiu
2016; see Image 3). The activity involves translating patterns using the Cartesian
coordinate system. This would be an example of CT that involves computational
problem solving practices, and systems thinking practices (i.e., incorporate loops) in
order to make the LED lights illuminate (Weintrop et al. 2016).

Image 2 Sphero coded to complete a path marked on the floor
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As Hughes et al. (2016) point out, making with the Ardunio has predominantly a
very Bhigh^ floor and more research is necessary to understand and develop tools that
allow for both a Blow^ and Bhigh^ floor. This is consistent with our view of making
experiences as having a higher cognitive demand level than the unplugged or tinkering
experiences. This also illustrates that sometimes the digital tool used may be too
cognitively demanding for concepts that may be more simply understood through the
selection of other tools and experiences.

Remixing

Remixing experiences refer to the appropriation of objects or components of objects for
use in other objects or for other purposes. Remixing is sometimes referred to as
Bhacking^ or Bdigital sampling.^ Remixing, as used in this context, is more than just
sharing an object or sharing and making a minor modification where the objects
produced are Blargely derivative, uninteresting, and of poor quality^ (Dasgupta et al.
2016, p. 1439). Remixing experiences involve sharing (intentionally or through
Bhacking^) an object and modifying or adapting it in some way and/or embedding it
within another object to use it for substantially different purposes. Remixing requires a
significant level of proficiency to identify a useable object and then adapt and modify it
to suit new purposes. To remix, the student must be able see useable objects within
other objects. In our view, this is the most cognitively demanding task and one that
suggests substantial advancement along a zone of proximal development.
Consequently, remixing experiences may fall sequentially after the other three or
various combinations or iterations of the other three experiences in the CTPF.

Remixing is common in the computer science community in that programmers often
use open-source code as a base and then modify it to suit their particular needs.
According to Resnick et al. (2009), Bcommunity members are constantly borrowing,
adapting, and building on one another’s ideas, images, and programs. Over 15% of the
projects. .. are remixes of other projects^ (p. 65). Perceptions of remixing have evolved
from negative notions of others Bstealing^ ideas, to a more open-minded view of a
community of learners that Bfeel proud, not upset, when their projects are adapted and
remixed by others^ (Resnick et al. 2009, p. 65). Online coding communities offer a

Image 3 Arduino board programming patterns. Source: http://researchideas.ca/mc/article-1-title-recent-
issue/arduino-math-patterns-on-an-led-matrix/ (reproduced with permission)

Digit Exp Math Educ

http://researchideas.ca/mc/article-1-title-recent-issue/arduino-math-patterns-on-an-led-matrix/
http://researchideas.ca/mc/article-1-title-recent-issue/arduino-math-patterns-on-an-led-matrix/


clear benefit for students in that it enables them to build upon others’ work and also
provides a forum for giving credit to others when they do so (Watters 2011b). Remixing
offers important opportunities for engaging in discussions with students about the
ethical issues associated with appropriation, sampling, hybridity and the responsible
use of digital technologies (Colton 2016). These opportunities for students can serve to
interrupt strong utilitarian views regarding computational thinking and broaden critical
discussions about the consequences of widespread computation. These opportunities
can also help build digital citizenship.

Dasgupta et al. (2016) tested the belief that remixing, particularly the appropriation
of programmable media in Scratch promotes learning (Lifelong Kindergarten Group at
the MIT Media Lab 2016). Using data from over a million Scratch user accounts they
carefully show that Busers who remix more often have larger repertoires of program-
ming commands [and that] exposure to computational thinking concepts through
remixing is [positively] associated with increased likelihood of using those concepts^
(p. 1438). They suggest that designing deliberately constructed remixing experiences
together with increased structure in an informal learning environment such as Scratch
might register larger effects. They also note that Bremixing may be more effective at
promoting engagement with some concepts, like loops, than others, like operators and
data^ (p.1446). Consistent with our view of remixing as developmentally more com-
plex for students, these researchers acknowledge that, Bremixing requires prolonged
engagement, and remains extremely difficult in informal learning environments. .. and
that enormous work remains to realize its potential^ (p.1446).

Davis (2014) provides a powerful unplugged example of remixes in mathematics
education by using conceptual analogy. Working with teachers on the topic of math-
ematical operations, Davis had teachers use their prior experiences and familiarity with
addition, subtraction, multiplication and division Bgrids^ to generate an exponentiation
grid from which a rich conversation arose around the properties of the operation. This
creative remixing, and not mere re-using of a popular artefact illustrates the way in
which remixing opens up spaces for recursive elaboration.

Historically, there is evidence to suggest that mathematicians routinely use remixing
in advancing the discipline. The development of the Hindu-Arabic numeral system and
the concept of angle (Matos 1990, 1991) are two historical examples. More recently,
the work of mathematician James Maynard on prime numbers provides a good example
of remixing in mathematics (Freiberger 2016). Freiberger (2016) notes in describing the
process undertaken by Maynard that:

This kind of thing is very symptomatic of modern mathematics . . . You're quite
often tying together lots of different areas of mathematics, and maybe draw
inspiration from physics and engineering as well, which normally you wouldn't
have thought as associated at all. If you say 'prime numbers' nobody thinks music
and nobody thinks cuboids with points in them. But it turns out that all of these
things can be related to each other, and this combination of different techniques
has proved very useful in mathematics. (Paragraph 14)

It is likely that part of the underlying reason that such approaches have become
Bsymptomatic of modern mathematics^ lies in the availability of rich computational
environments for doing mathematics.
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CTPF Example

We use the concept of a Bvariable^ to provide a threaded example of the four
experiences in the CTPF. By definition, a variable is able to be changed or adapted
in ways that shift the outcome of a formula or process. One example of an unplugged
experience that uses variable could be any non-computerized game (e.g., board game)
where rolling dice determines the movement of the players. While the lower and upper
limits of the variable are fixed to the values on the dice, the amount nevertheless has the
potential to be varied with each roll. Similarly, games that involve pulling cards or
landing on a specific square on a board game that then have some unknown or random
instruction or value that shapes the play are also examples of unplugged experiences
that involve the use of variables. The cards or the spot on the game board are tangible
objects that are representing the concept of variable. The extent to which the child, or
the player, recognizes the variable in the particular experience or object depends on the
degree to which the action which represents the variable is made explicit.

The same concept of variable is easily illustrated in a tinkering experience were
students change a component of prewritten code to modify the output. For example,
prewritten code may involve moving a character by a certain amount of spaces towards
an end object. The number of steps can be manipulated in the code by changing the
value of the variable within the coding structure. Linking the variable to measurement,
angles, number sense, and so forth, additionally connects the learning to mathematical
content. Tinkering experiences can also simultaneously be unplugged. For example, a
preexisting structure that moves water, sand or marbles, vehicles, for example, can have
the directional path altered by changing switches. The direction of the switch is the
variable component of the path. A making experience would involve building some
sort of code or other tangible object where a choice mechanism that can be manipulated
is included. A switch component in electronics that is activated differently depending
on the prior event is an example in a making experience.

Finally, developing complex code through remixing might involve copying or
hacking codes or components of a structure explicitly for their use of variables (or
choice inducing structures) which could also be further manipulated. In this final
example, the variable is likely embedded in some other coding structure that makes
the overall Bhack^ a more efficient process than rewriting the code containing that
variable. Earlier we provided examples of how formulae, which usually include
variables, are appropriated in mathematics to solve problems. In remixing, the learner
(or Bhacker^) must understand both the utility of the variable and the current and future
context in which the variable performs the change in order to increase the utility of use.
They must be able to Bsee^ the variable and its outcomes and this in our view represents
a higher level of cognitive challenge.

These examples of the concept of variable developed using the CTPF represents a
sequential approach and also illustrates instances were some experiences are simulta-
neously unplugged experiences. The CTPF is useful particularly for novices to CT in
that it potentially provides a starting pedagogical structure. It may be the case that the
starting point for some teachers may be at the tinkering stage. Relating the concept back
to unplugged experiences, without actually engaging in those experiences may also be
useful. Likewise circling back and forth between these experiences or simultaneously
incorporating unplugged versions of the experiences may also be useful and necessary.
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We propose that this will and may vary depending on the concept, the level of
knowledge of the students, and likely the level of pedagogical comfort of the teacher.
The degree to which such instances occur and how such a shuffle would impact
teaching and learning would be an important area of further research.

Conclusions

In this paper we propose and introduced the CTPF that consists of four experiences: (1)
unplugged, (2) tinkering, (3) making, and (4) remixing. Constructionism (Papert 1987),
and Vygotsky’s and social-cultural theory, specifically Vygotsky’s (1978) zone of
proximal development underscore our proposed framework. CTPF is not intended to
be prescriptive or necessarily sequential and, while we focus our examples in mathe-
matics education, we propose the framework can be applied more broadly to include
other disciplines.

The proposed CTPF is intended to provide a preliminary lens for structuring
teaching and learning for students by considering how to teach CT rather than what
to teach or practices associated with CT that have been outlined by others (Brennan and
Resnick 2012; Resnick et al. 2009; Resnick et al. 2005; Weintrop et al. 2016). Across
all of the proposed experiences, teachers should ideally construct lessons and learning
in such a way that supports a low floor and high ceiling (Papert 1980) but also with
what Resnick et al. (2009) call B‘wide’ walls’^. .. supporting many different types of
projects so people with many different interests and learning styles can all become
engaged^ (p. 63).

A significant challenge going forward will be the training of teachers, both in-
service and pre-service (Kafai 2015). The proposed CTPF may be tremendously useful
for teachers and learners who may have limited understanding of CT. Given that this
interest in CT is a relatively new resurgence, it is not likely that teachers encountered
CT education/training during their initial teacher training (Curzon et al. 2014).
Consequently, there is a Bknowledge and skill gap, especially with respect to subject-
based pedagogy^ (Curzon et al. 2014, p. 89). It may be that in-service and pre-service
teachers are at the exact same starting point in terms of knowledge and implementation
and, consequently, some synergies in teacher development may be possible.

The proposed CTPF may also be a useful structure for supporting teacher develop-
ment. Curzon et al. (2014) suggest that workshops for teachers should also begin with
unplugged experiences so that the knowledge of computer science concept gap is
narrowed and they are more confident with using the tools in their classroom. A
sequential approach to the CTPF, beginning with unplugged experiences and working
towards remixing experiences, may be particularly useful for novices. However, a
sequential approach is not essential; rather, ensuring exposure to all four experiences
in the CTPF may be more optimal in terms of supporting the development of CT.

Given the preliminary nature of our assertions about the CTPF, there are numerous
opportunities for further research. In addition to focused studies related to mathematics
and CT, cross disciplinary research pertaining to each of the four experiences is
necessary in order to understand the implications for teaching and learning beyond
traditional applications in computer science. Research is needed to explore the full
CTPF and its utility for learning of CT. Such research could explore the efficacy of the
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framework in relation to the development of teacher- and student-level CT knowledge
and teacher CT professional development.
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