
THE UNIVERSITY OF CALGARY

Build Notifications for Agile Software Development Teams

by

Ruth Margaret Ablett

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

SEPTEMBER - 2007

© Ruth Margaret Ablett 2007

 ii

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "Build Notifications for Agile Software

Development Teams" submitted by Ruth Margaret Ablett in partial fulfillment of the

requirements of the degree of Master of Science.

Supervisor, Dr. Ehud Sharlin, Department of Computer Science

Supervisor, Dr. Frank Oliver Maurer, Department of Computer Science

Dr. Jörg Denzinger, Department of Computer Science

Mr. Ron Murch, Haskayne School of Business

Date

 iii

Abstract

Continuous integration is an important part of agile software development. This

thesis describes the development and testing of a robotic interface developed to assist

with the continuous integration process utilized by agile software development teams.

This robotic notification device is compared to both ambient and virtual notification

mechanisms to evaluate its feasibility in an agile environment. The results of the

evaluation suggest that introducing such systems into an Agile environment should be

undertaken with care and consideration for the team culture and members’ preferences.

 iv

Acknowledgements

Thank you to my supervisors, Frank Maurer and Ehud Sharlin, who helped me

tremendously over these last two years. I’m so glad I made the choice to come back to

Canada. You’ve helped me to achieve what I didn’t think I would ever do.

I would also like to thank all members of the research groups over the past two

years: Chengyao (Cupcake) Deng, David Fox, Cheng Guo, Robert Morgan, Xueling Shu,

Cody Watts, Patrick Wilson, Min Xin, and Jim Young. I also want to thank the members

of the LSMR research group for making our lab such a fun place to be! Much

appreciation also goes to the Natural Language Research Lab at Hokkaido University,

and to Dr. Kenshi Araki and Dr. Rafal Rzepka for giving me the opportunity to spend a

wonderful summer doing research there.

Much appreciation also goes to my parents and family for your help in supporting

me and proofreading my work. Thanks to Craig Schock for the many hours of

proofreading my papers and this thesis. Thanks also to all the members of the Midnight

Taiko Kai, for your friendship and the opportunity to create wonderful music together.

 v

Dedication

To my family

 vi

Table of Contents

Approval Page
Abstract
Acknowledgements
Dedication
Table of Contents
List of Figures
List of Abbreviations
Publications

CHAPTER ONE: INTRODUCTION

1.1 Research Goals
1.2 Structure of this Thesis

CHAPTER TWO: RELATED WORK
 2.1 Related Work in Software Engineering
 2.1.1 Software Testing
 2.1.2 Continuous Integration
 2.1.3 Knowledge Sharing
 2.1.4 Build Status Awareness Dispersion
 2.1.4.1 Methods of Information Signaling
 2.1.4.2 Current Techniques
 2.1.4.2.1 Virtual
 2.1.4.2.2 Environmental / Ambient

2.1.4.3 Build notification techniques used in
 industry

2.2 Related Work in Human-Robot Interaction
 2.2.1 Robots as colleagues and helpers
 2.2.2 The role of presence

CHAPTER THREE: BUILDBOT REQUIREMENTS
 3.1 Approach
 3.1.1 A Robot as an Information Radiator
 3.1.2 Hardware Requirements

CHAPTER FOUR: BUILDBOT IMPLEMENTATION
 4.1 Architecture

4.2 The Robot

ii
iii
iv
v
vi
x
vii
viii

1
2
3

4
4
5
7
8
9
9
12
12
15
19

20
21
22

24
24
25
27

29
29
31

 vii

4.2.1 Hardware
4.2.2 Robotic Behaviour
4.2.3 Low-Level Implementation

4.2.3.1 Vision
4.2.3.2 Localization and Navigation
4.2.3.3 Other components

CHAPTER FIVE: FIRST EVALUATION
 5.1 Context and Approach

5.1.1 Participants
 5.1.2 Scheduling

5.1.3 Location
5.1.4 Study Implementation

5.2 Results and Discussion

CHAPTER SIX: SECOND EVALUATION
 6.1 Study Objectives
 6.2 Study Description
 6.2.1 Participants
 6.2.2 Scheduling

6.2.3 Location
6.2.4 Implementation

 6.2.4.1 Guidelines for Developer Participants
 6.2.4.2 Java Lava Lamps Implementation

 6.3 Evaluation Results
 6.3.1 Results for Part I: Email Only
 6.3.2 Results for Part II: Email and Java Lava Lamps
 6.3.3 Results for Part III: Email and BuildBot
 6.3.4 Final Results: Comparing All Three
 6.3.4.1 Positive and Negative Aspects of Email

6.3.4.2 Positive and Negative Aspects of Java
Lava Lamps

 6.3.4.3 Positive and Negative Aspects of
 BuildBot

CHAPTER SEVEN: DISCUSSION

7.1 Development Environment Culture
 7.1.1 What happened to the commit token?
 7.1.2 Should the development environment be fun?
7.2 Notification Device Alternatives

31
32
33
34
37
40

41
41
42
42
42
43
45

50
50
50
51
52
53
55
56
58
60
60
62
67
71
74
76

78

82
82
82
83
83

 viii

CHAPTER EIGHT: CONCLUSION AND FUTURE WORK
 8.1 Conclusion
 8.2 Future Work

References and Citations

Appendix A: First Evaluation Post-Questionnaire
Appendix B: Evaluation Pre-Questionnaire
Appendix C: Evaluation Explanation and Guidelines - Part I
Appendix D: Evaluation Post-Questionnaire – Part I (Developer)
Appendix E: Evaluation Post-Questionnaire – Part I (Observer)
Appendix F: Evaluation Explanation and Guidelines - Part II
Appendix G: Evaluation Post-Questionnaire – Part II (Developer)
Appendix H: Evaluation Post-Questionnaire – Part II (Observer)
Appendix I: Evaluation Explanation and Guidelines - Part III
Appendix J: Evaluation Post-Questionnaire – Part III (Developer)
Appendix K: Evaluation Post-Questionnaire – Part III (Observer)
Appendix L: Participant Consent Form
Appendix M: Ethics and Co-Author Approval

85
86
87

89

93
95
97
98
100
101
102
105
107
108
111
113
116

 ix

List of Figures

Figure 2.1: Ambient Orb

Figure 2.2: Dangling String

Figure 2.3: A sample build management server web page

Figure 2.4: A screenshot of an email sent detailing the build status

Figure 2.5: Java Lava Lamps shown in various states

Figure 3.1: BuildBot arriving at a developer’s desk

Figure 4.1: Overview of the BuildBot system architecture

Figure 4.2: A straight line, a curved line, and a junction

Figure 4.3: Examples of lines on different floors.

Figure 4.4: An example of conversion

Figure 4.5: An example of BuildBot’s internal map

Figure 5.1: The laboratory layout for the first evaluation

Figure 5.2: The post-questionnaire results from both days of the first evaluation

Figure 6.1: The layout of the laboratory

Figure 6.2: Line of sight from different developer workstations

Figure 6.3a: A developer working with the commit token

Figure 6.3b: The commit token itself

Figure 6.4: Setup for Java Lava Lamps

Figure 6.5: Part I Results - Notification

Figure 6.6: Part II Results - Notification – Developers

Figure 6.7: Part II Results - Notification – Observers

Figure 6.8: Part II Results: View of the Java Lava Lamps from workstation and
build awareness

11

11

13

14

16

27

30

33

35

36

37

43

48

54

55

57

57

59

62

63

63

64

 x

Figure 6.9: Part II Results – Perception of Surroundings

Figure 6.10: Part II Results – Perceptions of Java Lava Lamps

Figure 6.11: Part II Results – Java Lava Lamps’ audio and visual distraction

Figure 6.12: Part II Results – Build Awareness

Figure 6.13: Part III Results – Perception of Surroundings

Figure 6.14: Part III Results – BuildBot – audio and visual distraction

Figure 6.15: Part III Results - Perceptions of BuildBot

Figure 6.16: Part III Results: Developers

Figure 6.17: Part III Results: Observers

Figure 6.18: Part III Results – Preferred notification device - Developers

Figure 6.19: Part III Results – Preferred notification device - observers

65

66

67

68

69

70

70

71

72

73

73

 xi

List of Acronyms and Abbreviations

AIBO – Artificial Intelligence roBOt

LAN – Local Area Network

LED – Light Emitting Diode

RSS – Rich Site Summary

TDD – Test Driven Development

 xii

Publications

Materials, ideas, and figures from this thesis have, in part, appeared previously in the

following publication:

©2007 IEEE. Reprinted with permission, from R. Ablett, E. Sharlin, F. Maurer and J.

Denzinger, and C. Schock, "BuildBot: A Robotic Self-Supervision Mechanism for Agile

Software Engineering Teams”, IEEE RO-MAN 2007, Jeju Island, Republic of Korea,

IEEE Press.

 1

Chapter One. Introduction

 When writing software, there are many factors that can cause changes in a

software development plan. Changes in business environments, customer tastes, budget

and time constraints are all inherently part of the software development process.

Traditional software engineering involves a heavy emphasis on design and specification

at the beginning and then relatively little feedback from customers or users during

implementation. Agile methods (Manifesto, 2007) are a set of best practices that allow

the customer to take an active role throughout the development process. Instead of one

large project over many months or years, the development is broken into many small sub-

projects, or iterations. Each iteration is one to six weeks in length (Larman, 2004), and

includes analysis, design, implementation, testing, and refactoring. After each iteration,

the development team reviews their progress with the customer, who then advises how

development should proceed.

The software produced by the developers must not only fit with the customer’s

vision of the system, but it should be thoroughly tested and working properly. When

working in a software development team, it is imperative that the code newly written by

each member of the team integrate properly with the code already written. The practice of

automatically incorporating new code into the repository, and deploying and testing the

result is called continuous integration. When the new code is integrated, there may be

conflicts with other parts written by the other developers on the team. If these conflicts

occur but the team is not aware of them, they may be compounded, adding extra person-

 2

hours to the project. Thus, if these errors do occur, it is very important that the developers

be alerted to any such problems as soon as possible so they can be fixed immediately.

Mechanisms to notify developers of such problems do exist and are used in agile

environments in industry. Examples include sirens, coloured lights, a message to a shared

pager, or virtual notifications such as email, but to the author’s knowledge, there has been

no empirical exploration of the effectiveness of different types of these devices in a

formal evaluation. In this thesis I attempt to explore whether a physically present

notification device, in the form of a robot, affects the developers in a positive way.

The tool developed was BuildBot, a robotic build notification device. A robot has

an interesting duality – it is a physical entity, present in the development space, but it is

also part of the virtual environment of computers. It was hoped that taking advantage of

this dual nature would result in a more effective notification device. This robot was tested

against two other conventional notification mechanisms in a study with an agile team.

1.1 Research Goals

The overall goal of this thesis is the following:

Investigate the use of a robot as a continuous integration build notification

mechanism, and compare this robot with existing virtual and ambient notification

mechanisms.

 3

Two evaluations were performed, comparing three different mechanisms: a totally

virtual notification, an ambient device, and a robot.

1.2 Structure of the Thesis

This thesis takes the following form: Following this Introduction, Chapter Two

provides background and previous work, both in agile software engineering and in

human-computer and human-robot interaction. Chapter Three outlines the design goals of

BuildBot and Chapter Four describes its implementation in detail. Chapter Five provides

the context, implementation and results of the first evaluation, which measured reaction

times and participant distraction of unrelated alerts. Chapter Six outlines the context,

implementation and results of the second evaluation, which measured the longer-term

effects of the build notification. Chapter Seven summarizes the results and experiences of

the participants in the study, and Chapter Eight concludes this thesis, outlining

shortcomings of BuildBot and the study, and provides suggestions for future work.

 4

Chapter Two. Related Work

 The goal of BuildBot was to develop a prototype of a near-autonomous robotic

build notification device, designed and tuned for a focused agile software development

social setting. At the time of writing, there was no research being done exploring the

possible roles of robots in an agile software development environment. However, there is

relevant agile software engineering work done that directly relates to this project. The

first part of Chapter Two provides a background for the reader, including describing

background concepts important to the full comprehension of this thesis. Previous work in

agile software development follows, including a discussion of current techniques for

build state awareness. The final part of the chapter contains previous work in human-

robot interaction.

2.1 Related Work in Software Engineering

Agile methods (such as eXtreme Programming [Beck, 2000] or Scrum [Rising et

al, 2000]) refer to human-centric software engineering methodologies that advocate the

development of high-quality software using short iterations. The goal of software

engineering is to create software that fulfills the needs and wishes of the customer.

Software testing is a process used to ensure that the software functions correctly.

 5

2.1.1 Software Testing

 Software testing is a way to ensure software functions correctly, safely, and as the

customer specified. Manual testing involves a tester running the program and ensuring it

produces the correct output. Tests should be run every time a change is made to the code.

If an error manifests, it can be found and fixed quickly, as there is only a small amount of

changed code that could have caused it. A simple bug which may take only a few minutes

to repair immediately after it is introduced into the code base may end up costing

significant numbers of person-hours if it is not identified until more code has been written

around it.

 Manual testing is monotonous and a programmer may miss features or not test

features thoroughly enough, especially when having to repeat tests often. The solution is

to write tests that will be automatically run using a testing tool such as JUnit (2007),

NUnit (2007), Cactus (2007), or some other automated testing framework. Automated

testing eliminates the tedious task of manual re-testing so that developers can concentrate

on writing code and new automated tests.

 Unit testing is the procedure used to finely test individual units of the software

(Robillard et al, 2003). Test Driven Development (TDD) is an agile practice in which

developers write these unit tests and add them to the test suite before they write the code.

Doing so sets precise goals for the programmers as it defines the code that needs to be

written, and the developer must think about the behaviour of a method before beginning

 6

to write it. It also gives a small sense of accomplishment when tests pass. Most

importantly, following this practice ensures tests actually get written, instead of the

testing period being omitted due to time constraints (Larman, 2004 and Astels, 2003).

 An exhaustive suite of unit tests should be maintained – for anything that could

possibly break. This suite of tests acts as a specifications document, allowing other

developers adding to the codebase to understand how to use the components based on the

tests. If a task does not have an exhaustive suite of tests, it is not considered completed

and cannot be put into production (Astels, 2003).

A test consists of the creation of an initial state and the calling of the method with

input parameters and expected output. These are defined by the developer as they

consider the correct behaviour of the class. If the output from the software matches the

expected answer, the test passes. Otherwise, it fails. Human inspection of test results is

unnecessary, as tests can only pass or fail (Larman, 2004).

 There is more than one type of unit test failure. If a failed test has never passed,

indicating it is a new test – this may not count as a proper failure, as it indicates the

developer has not written any code to make it pass yet. Conversely, if a failed test has

passed before, it is a regression failure and indicates that new bugs were introduced into

the system to make the test fail. Finally, exceptions may occur, indicating possible

integration or compilation problems (Astels et al, 2002; Deng et al, 2007; Astels, 2003).

 7

2.1.2 Continuous Integration

Agile methods rely heavily on automated regression testing to ensure internal

software quality. Continuous integration is an approach used by agile teams working on a

common piece of software. Every time developers check new code into the shared source

code repository, the entire software is built, deployed and tested against the suite of

automated regression tests. Ideally, check-ins occur frequently. Continuous integration

with regression testing and frequent check-ins of tiny increments ensure that developers

are aware of the condition of existing functionality with the addition of new code.

Continuous integration encourages clean design and prevents problems later on in the

development process, since bugs can be caught earlier (Fowler, 2006; Robillard et al,

2003). There are a few continuous integration tools available, such as CruiseControl

(2007) and Anthill (2007).

After finding newly checked-in code in a repository, a continuous integration

server builds and deploys the software, then executes all tests. If one of these tests fails,

the continuous integration server sends an indication to the person(s) who checked-in the

code resulting in a state change to build failure. It is the responsibility of the who team

member checked in the code to ensure that a reported bug is resolved immediately, for

example by reverting to an older version or by fixing the problem in another way. If the

bug fix is delayed, other team members might synchronize their code with a broken

version of the system – resulting in even more effort required to resolve the problem.

 8

A study by Saff and Ernst (2004) evaluated continuous integration when used by

a single developer to ensure new code passed regression and unit tests. They found that

continuous integration had a positive effect on the completion of programming tasks.

Their study shows that even individual developers benefit from continuous testing of

their own code. However, we are interested in ways that different Continuous Integration

tools affect agile teams as a whole.

When teams use continuous integration, knowledge of the build state must be

dispersed in a way that alerts all developers without becoming a distraction. Agile teams

have many means of displaying information for the benefit of developers, customers and

managers – these are outlined below.

2.1.3 Knowledge Sharing

Excepting face-to-face communication, knowledge sharing is achieved in agile

teams through information radiators. These are openly displayed artifacts or other means

by which developers can gain knowledge about the state of the project without explicitly

seeking it (Cockburn, 2001). Human-computer interaction has a related concept, ambient

data displays, which present information so that “one does not even need to be looking at

it or near it to take advantage of its peripheral clues.” (Weiser et al, 1996) These types of

displays are often very simple and use colour, sound and motion to convey information.

According to Kent Beck (Baker, 2005), “an interested observer should get a general idea

of how the project is going in 15 seconds. He should be able to get more information

 9

about real or potential problems by looking more closely.” This can be achieved using

ambient data displays. The benefits can be seen by outside observers and the

development team members. They can quickly assess the state of the project, and this

provides encouragement and an incentive to improve.

One example is a pair of lava lamps, green and red. If the green lamp is on, the

build is fine. If the red lamp is on, the build is broken and needs to be fixed. The lamps

should be situated in a location that is as visible as possible to developers, customers and

managers can instantly acquire build status information.

For developers, immediate accessibility of build results makes these results more

relevant and gives a sense of satisfaction that the software they are developing is actually

being tested. Customers can easily ascertain how their investment is progressing.

2.1.4 Build State Awareness Dispersion

2.1.4.1 Methods of Information Signaling

 Cadiz et al (2001, 2003) outline three categories into which awareness strategies

generally fall: polling, alerts and peripheral awareness.

Polling involves an information source such that the information is accessible when

users demand it. This approach unfortunately has two main limitations, namely, high

 10

cognitive burden (the user has to consciously remember to check the information and

process what has changed, taking the user away from other tasks) and unreliable updates

(the user may poll infrequently and thus may miss important updates). Thus, a user may

miss an important event and only find out about it when she polls.

Alerts are a way of overcoming this, bringing the information to the user when an

event occurs. The user has a much lower chance of missing the update; however, she can

also be interrupted and distracted. This can take away from a task, which requires intense

concentration. The effects of alerts and interruption have been explored in several studies

(Cutrell et al, 2001; McFarlane et al, 2001). Pagers and cell phones are a ubiquitous

example of alert mechanisms.

Email is a special case as it can either be an alert or a polling mechanism. If the user

uses an email notification program (examples include Google Talk or MSN Messenger),

a user can be alerted to a new email. If not, the user must poll for email updates.

Peripheral Awareness takes advantage of our subconscious and our ability to absorb

information from our environment without having to consciously concentrate on its

delivery. Essentially, the goal of peripheral awareness “is to present the information such

that it works its way into users’ minds without intentional interruptions” (Cadiz et al,

2001). Essentially, these devices move from the periphery to the focus of a user’s

attention smoothly (Weiser et al, 1996). An example of this is the Ambient Orb (Ambient,

2007), created by Ambient Devices, which consists of a frosted glass orb that changes

 11

colour depending on the data and programming given to it

(Figure 2.1). It could be used to convey information such

as the status of a software build (Swanson, 2004;

Halvorson, 2004) a reminder to take medication (E-Health,

2006), the latest sports results (red if the home team lost,

green if they won) or the direction and strength of a stock quote movement.

 A mix of visual and audio signals can be a very powerful tool for information

delivery, as with Jeremijenko’s Dangling String (Weiser et al, 1996). The string, an eight

foot long piece of plastic spaghetti, is attached to a ceiling-mounted electric motor

(Figure 2.2). Data about network traffic is input into the motor - each bit passing along

the network is represented as a twitch of the motor. Thus, high network traffic causes the

string to whirr along, whereas when the network is not being used, the string may only

slightly twitch.

Figure 2.2. Dangling String

There are many more examples of ambient devices. Heiner et al. (1999) created a

device consisting of a series of water-filled tubes that can convey text or images using

Figure 2.1. Ambient Orb

 12

selective bursts of air bubbles. An office plant that reacts to activity in an environment

was created by Bohlen et al. (1998). Dahley et al. (1998) created two types of ambient

displays, Water Lamp and Pinwheels, that emulate the beauty and subtlety of nature.

Wisnesky et al. created an entire room that brings the user into a rich ambient space

(Wisneski et al, 1996; Ishii et al, 1998).

The three techniques discussed above - alerts, polling and peripheral awareness - can

be combined in the same context. For example, less important updates can be delivered

via peripheral awareness or polling, and something more urgent can demand the user’s

attention via alert.

There have been a few approaches for how best to disperse awareness information to

people involved with a project. These are outlined below.

2.1.4.2 Current Techniques

 There are many variations of the following techniques which notify developers or

those directly involved on the project.

2.1.4.2.1 Virtual

The first is the simplest approach that works for distributed groups. There may be a

central server page (for example, a build status page where those involved with the

 13

project can access the build status from anywhere – see Figure 2.3) which uses the

polling approach, or the result may be sent via email (Figure 2.4) whenever a build

occurs.

Figure 2.3. A sample build management server web page generated by the build engine, in this case

Anthill. Anyone authorized to do so can access the page to check the build status. If the build has

failed, the user can get more information, including which tests failed.

 14

Figure 2.4. A screenshot of an email sent detailing the build status.

An alternative to the polling approach is the use of some kind of virtual alert. This

involves the build engine sending to the developers a structured email about the status of

the build, or possibly an instant message or system tray alert. There are some variations

to the recipients and the frequency of these notifications, but they all occur under the

virtual domain. Email can be used either as a polling technique (on its own) or as an alert

technique (if the user has an email notification program, e.g. Google Talk or MSN

Messenger).

 15

The email may be sent to everyone working on a project (including project managers),

or it may only be sent to the last person to upload code which caused one or more tests to

fail: the person who effectively caused the build breakage. The email notifies them of the

specific tests that failed and the files that were modified since the last stable build, so the

developer has enough information to diagnose the problem.

While this approach is simple and requires very little setup, there are inherent

drawbacks. Only a small subset of individuals is aware of the build status, and anyone not

receiving these emails must acquire the information through polling. Furthermore, this

information will immediately become dated as soon as a different person commits new

code. The information can only be ascertained by checking the console of the build server

itself – if it is accessible to customers and developers.

Additionally, many emails can result in information overload. It would not be wise to

send emails to every member of the team, managers, and customers. If sent out every

time the build process was run, this information would soon fade into the background and

become ignored (essentially, it would turn into a form of spam). This is especially true if

code commits are occurring by many developers very often (Smart, 2006).

2.1.4.2.2 Ambient / Environmental

Savoia (2004; 2004; Clark, 2004; Slashdot, 2004; Pragmatic, 2004) has created an

ambient feedback device for continuous integration, the Java Lava Lamp. There are two

 16

lava lamps involved, one green and one red (Figure 2.5). The green lamp represents a

successful build, and the red lamp a build in which one or more tests have failed. Timing

is also significant; because the lamps take a few minutes to warm up, the bubbles mean

the lamp has been on for at least several minutes. For a green lamp, this is good, however,

bubbles in the red lamp indicate a problem.

 a) b) c)

Figure 2.5. Java Lava Lamps shown in various states.
a) The green lamp is bubbling, indicating the build has been successful for at least 10 minutes.
b) The red lamp is bubbling, indicating the build has been broken for at least 10 minutes.
c) The green lamp is on, but the red lamp’s bubbles are still visible, indicating the build was broken
for at least 10 minutes but was recently fixed.

Since lava lamps take a few minutes to heat up, it is possible to tell how long the

build has been broken. This delay affords the developers the opportunity to fix a broken

build before the lava lamp indicates that the build has been broken for a long time. The

playful nature of the lava lamp encourages the developers to fix the build without

requiring the involvement of the project manager.

 17

In Clark’s implementation of Java Lava Lamps (Clark, 2004), there is a clicking

sound made when the receiver module switches the power to the lamps on and off. This

adds to the soundscape of the developers’ area. The click is audible without being

obtrusive, so it can alert about a change in the build without becoming a distraction.

The lava lamps are usually combined with email. The person responsible will see the

lava lamps change, hear the click, and will receive a notification that their recently

committed code broke the build. The build engine’s notification should include the failed

tests, files which contain offending code and anything else that will help the developer to

fix the problem as soon as possible. The lamps themselves give no information other than

that the build has broken –only really useful to those who want a high-level overview of

the status of the project (such as customers or perhaps managers).

When combined with email, these Java Lava Lamps are a vast improvement over

email alone, but still have limitations. For example, there is no individual accountability –

everyone knows the state of the build, but there is only a slight pressure, for the sake of

the group, for the individual to fix their offending code.

Savoia’s Java Lava Lamps were developed to help a team keep track of the build

status through two coloured lamps located in a prominent location in the development

area. These lamps are a simple way of conveying the build state, which is accessible via

the colour of the lamp currently lit. However, this is the only means of information

dispersion. If the build is broken, the lamps keep the developer responsible for the broken

 18

build anonymous. The person whose code caused tests to fail should feel some kind of

pressure to fix the build. This pressure should not be unpleasant or cause the developer

any more than slight embarrassment. It is hoped that introducing pressure in a fun and

lighthearted way will be most effective.

The lava lamps show the build state through the colour of the lamp currently glowing.

The lava lamps seem to be successful when people are walking around or entering the

work environment, especially if it is made up of cubicles. However, for a developer

seated at her workstation to access this information, she must look at the lamps. If she

does not have a clear view of the lamps from her workstation, it defeats the purpose of an

ambient system for her, as she must expend effort to learn the status of the build. One

way around this is to use sound to diffuse information (disadvantages include the

potential for distraction, or the fact that developers may be wearing headphones and thus

not notice).

When the power is switched from the red lamp to the green lamp, a soft click can be

heard. While audible, this click is very quiet, is instantaneous, and is identical whether

the build was broken or repaired. A more robust solution would emit some sort of audio

indication that the build was fixed or broken, and anyone in the room would be able to

instantly become aware of the build state through sound alone.

While this approach is simple, it primarily makes use of visual information and this

requires developers to poll the ambient display. A better solution would eliminate the

 19

need for polling and instead utilize information osmosis. In this way, information would

become available for developers without causing a distraction.

2.1.4.3 Build notification techniques used in industry

In software development teams that practice agile principles, different types of alerts

can be used to notify developers, project managers and others involved with the project.

Smaller, co-located teams can rely on inter-team communication for notification of a

build failure. Some larger teams, or teams working together, can rely on either email, a

system tray notification or RSS feed alert (Smart, 2006). Several types of alerts can be

used, one for failures on the development and testing machine, and a more urgent alert

for when tests on the deployment machine failed (for example, a page alert on the

company pager). For the most urgent situations, the project manager and directors can

visit the development area.

The following section provides, for the reader, a background of fundamental concepts

as well as current research in human-robot interaction and human-computer interaction.

 20

2.2 Related Work in Human-Robot Interaction

 Robots are simply mobile computers, but the psychological effect they have on

humans is remarkable. Affective interfaces are defined by Picard (1997) as interfaces

which relate to, arise from, or deliberately influence emotions (Scheef et al, 2000).

Scheef et al. (2000) studied how children and adults in different social settings

reacted to a teleoperated robotic dog named Sparky. Adults and children had a chance to

interact with it and became engaged with it. Thrun (1999) studied museum visitors’

reactions to a tour guide robot, Minerva. The robot interacted with many visitors in a

spontaneous, short-term manner, utilizing emotional emulation to communicate with

them. Visitors were attracted to the robot when it emulated a positive, happy mood.

 Sparky and Minerva were tested via short-term, spontaneous interactions with

people who had not interacted with them before. There may be differences in the

relationships humans have with more permanent robots in an environment, such as a

companion, helper, or colleague.

Friedman, Khan and Hagman’s study on the human-robotic relationship revealed

that a person’s mental model of autonomous robots are more anthropomorphic in nature

than with convention computer systems (Kiesler et al, 2004; Friedman et al, 2003). Very

few people give their computers a name, but the majority of owners of the Sony AIBO

robot dog seem to do this. Even though they are aware that AIBO is a piece of hardware

 21

programmed like a computer, participants in the study used words such as “eyes”, “ears”,

“brain” or other biological descriptors to describe AIBO’s mechanical parts. Similarly,

biological processes were also used to describe behaviour: for example, that AIBO

“sleeps” (Friedman et al, 2003). This study raises the possibility that people will react

more favourably to a robot with an aesthetically pleasing shape, even if the robot’s role is

serious.

Entertainment robots represent only a fraction of the roles robots can play.

Industrial robots were among the first robots used in significant numbers. However, these

robots had very little interaction with humans and were totally preprogrammed to

complete a task in a near-unchanging environment. Creating a robot to complete a task

that involves interaction with humans in a constantly changing environment presents a

great challenge. Many of us dream of having a robotic maid to do the cleaning and

cooking, or robotic cars to drive us safely from one location to another. There is research

being done to develop robots that perform useful roles and interact with humans.

2.2.1 Robots as colleagues and helpers

Khan (1998) and Dautenhahn and colleagues (2005) performed studies to

examine adults’ perceptions of a robot as a potential helper in the home. Generally,

people were more inclined to want a robot to perform tasks such as cleaning, but less

inclined for tasks such as child and animal care.

 22

Kidd (2003) discusses different uses for sociable robots. He describes the

transition between using robots as tools or simple entertainment devices (such as an

industrial robot or a children’s toy) to becoming partners that interact with humans.

While still limited in their capabilities, emerging robots are designed to interact with their

users’ sociability, and to integrate in a social setting as peers and teammates (Kidd, 2003;

Xin et al, 2006; Breazeal, 2002). His study found that participants reacted quite

differently to a human, an animated character, and a robot in several game situations.

This can be explored in many contexts, beyond the realm of entertainment.

2.2.2 Robots’ physical presence and onscreen agents

There have been several studies that examine the psychological effect of physical

presence on users.

Young and his colleagues (2006) created an interface through which remotely

located colleagues could express ”surrogate presence” through a Sony AIBO robot dog.

DiSalvo et al. (2003) developed a telerobotic interface, called the Hug, through which

users can express intimate communication and touch.

Yamato et al. (2003) performed a study in which participants were asked to

perform a task, assisted by either an on-screen agent (an image of a rabbit) or a robot

situated near them (shaped like the on-screen rabbit). People reacted more positively to

 23

the robot when they were dealing with a physical interface rather than an on-screen

interface.

Wainer and his colleagues (2006) did a series of studies in which participants

were helped with a puzzle by a robot situated in the same room, a robot speaking over a

teleconferencing link, and a simulated robot. They found that robot embodiment had a

significant effect on the participants’ impression of the robot’s role. Many participants

felt that the robot was more enjoyable, helpful and generally appealing than a simulated,

on-screen robot.

By extension, physical presence in an ambient display could have an effect on its

impact. “Robots can be viewed as computers with an active presence in the physical

world” say Young and his colleagues (2006), and this concept has the potential to be a

powerful one when applied to notification mechanisms and ambient displays. This was

the basis for BuildBot, a display that actually moves and reacts to virtual stimuli

physically in the development environment.

It was hoped that a more interactive system would enhance the way the

knowledge is shared without becoming a distraction to the intended audience. BuildBot

was developed as an engaging and sociable monitoring technique that was hoped would

encourage team members to do the right thing, avoiding uncomfortable and perhaps more

threatening approaches such as those requiring the project manager’s involvement.

BuildBot’s design is described in detail in Chapter Three.

 24

Chapter Three. BuildBot Requirements

 This first part of this chapter outlines possible improvements to previous

notification devices and introduces the idea of a robot in that role. The second part

describes the design of BuildBot.

With continuous integration, it is very important that the developers, customers,

managers, and anyone else involved in a project be aware of the build status. There are

several requirements for the type of interface used.

- It must give build information without someone having to seek it

- It must be noticeable, but not too distracting

- It must be easy to interpret, even with a passing glance

3.1 Approach

The goal of BuildBot was to use the agile team’s collective awareness to create an

engaging and fun tool that helps the team become aware of and thus fix broken builds as

quickly as possible. It was decided that the tool should be one that brings the information

to the developers, rather than having the developers take time and mental energy to seek

it. The tool should not be too distracting, nor should it fade into the background to the

point where the information is not readily available.

 25

3.1.1 A Robot as an Information Radiator

 BuildBot was developed to bring build information to the developers. If a

developer commits code which causes a build breakage, the robot, which usually resides

upon a power station, stands up and follows a network of lines to the responsible

developer’s workstation.

A robot has the potential to be an effective assistant to an agile team. Robots

possess the ability to physically respond to virtual stimuli, bringing awareness

information from the digital realm into the physical and vice-versa. Robots are equipped

with input sensors and output actuators that can allow them to become a believable

physical component of the agile team physical setting. Robotic embodiment of the state

of the software build can help an agile team collaborate more effectively, especially if the

robot is allowed to physically interact with the team members. In this environment, a

BuildBot would act as a dynamic information radiator, that changes according to the

circumstances, rather than a static radiator, which tend to get ignored (Cockburn, 2001).

Information exchange thus occurs in an ambient manner, in the physical context of

humans (Xin et al, 2006).

If new code integration and testing is successful, BuildBot stays still and silent.

Instead of giving positive feedback (which may distract team members), the robot only

alerts developers when there is a problem. If new code integration causes one or more

tests to fail, the build is considered broken. In this case, BuildBot walks to the individual

 26

whose code is responsible for test failure and displays to the team that it is not happy with

that developer, in a friendly, funny, and playful way (Figure 3.1). The timing of this walk

is important – BuildBot’s deliberately slow and dramatic walk serves two purposes. It

alerts the team to the broken build via ambient sound and visual cues. By sending an e-

mail to the responsible individual, BuildBot alerts him to the failed tests and gives him

time to fix the problem. After a few minutes, the dog begins its walk to the workstation.

This creates a playful tension as the other team members wonder where the robot is going.

The goal of BuildBot’s design is the following: by giving the responsible

individual a lighthearted and friendly reprimand, BuildBot introduces more targeted

accountability. It avoids potentially unpleasant confrontations (for example, between a

team leader and a developer) and it introduces a mild social incentive to fix the problem

without having to involve a superior.

 27

Fig.3.1 BuildBot arriving at a developer’s desk.

3.1.2 Hardware Requirements

For BuildBot to be an effective monitor for an agile team, it is necessary to have a

robot with several capabilities and features. To physically interact with the team

members, the robot needs to be able to walk with stability and be able to handle different

surfaces such as carpet or linoleum. It also needs to gain information about its

environment through vision. In order to act as an information radiator and provide

ambient build information, sound or LED lights (or both) are necessary. To communicate

 28

with the continuous integration server, the robot needs wireless capability. Lastly, the

robot must be easily programmable.

BuildBot was designed to be a tool so that teams, customers and management can

easily see build status information without having to seek it. The implementation and

design of BuildBot is described in Chapter Four.

 29

Chapter Four. BuildBot Implementation

Chapter Four illustrates BuildBot, and outlines the interaction between it and the

continuous integration components. The implementation of the robot, including its vision,

navigation and other facets of its behaviour are described in detail in the second part of

the chapter.

4.1 Architecture

There are several different components involved in the BuildBot system. The

architecture and inter-component communication are shown in Figure 4.1 below.

 30

Fig.4.1 Overview of the BuildBot system workflow. The developers commit
their code to the repository, which is accessed by the continuous integration server.
The continuous integration server compiles, deploys and runs tests and reports the
results to BuildBot, which uses ambient awareness information to alert the
developers.

The repository contains the software currently being developed by the software

team. When a change is uploaded to the shared code repository by a team member, the

continuous integration component runs a script that integrates the entire team’s code. The

code is compiled, deployed, and a series of tests (this can include unit tests, acceptance

tests, and integration tests) is executed. If all tests pass, the result is a successful build. An

unsuccessful build can be caused by a compilation error, a deployment error, an

exception, illegal operation (such as divide by zero) or one or more failed tests.

The result (a string representing the responsible developer’s seat number) is sent

to the robot via a wireless LAN. It contains the build status and the office location of the

build-breaker. The details of the implementation are explained later in this chapter.

 31

4.2 The Robot

Advances in robotics have resulted in robots that are powerful, affordable and

compact enough to make the BuildBot prototype feasible.

 The form of the robot used for BuildBot is very important to engage people and

avoid unpleasant effects. As robots become more and more lifelike, there is a point where

robots stop being cute and engaging and begin to look creepy. Masahiro Mori described

this effect as the “Uncanny Valley” (bukimi no tani) (Mori, 1970). For example, a

humanoid robot with unnatural movements may remind people of a moving corpse! A

cute robot dog was thus chosen to avoid this effect and increase the chance that the

developers will see the robot as a positive, lighthearted addition to the environment. The

robot used for the BuildBot’s implementation is the most recent model of the Sony AIBO

robot dog, the ERS-7 (Sony, 2007).

4.2.1 Hardware

The AIBO is ideal for an ambient information radiator as it combines motion,

visual, audio, and tactile components. It can move its head and four legs, and comes

equipped with a camera, two microphones, a speaker, LEDs in various colours, wireless

capability, touch-sensitive buttons, and sensors for temperature, vibration, distance and

acceleration. The robot is also zoomorphic, in the shape of a cute puppy, and that adds to

the feeling of fun and lightheartedness.

 32

4.2.2 Robotic Behaviour

BuildBot’s behavior is event-based. When inactive, the robot stays perched atop

its power station, charging, until it receives a message from the server regarding the build

status. If the build is successful, BuildBot does not move. However, if the build is broken,

BuildBot identifies the responsible developer by getting up and slowly moving to his

workstation.

When creating the first prototype of BuildBot, it was necessary to simplify

complex details such as the vision. In order to allow the robot to walk to the team

member’s desk, a vision algorithm was developed that analyzes the streaming video from

the robot’s eye (a camera integrated into the end of its nose). For simplicity, a tree

structure of guidelines was placed on the floor. In this tree, each leaf terminated at a

developer’s desk and this allowed BuildBot to easily navigate to a specific workstation

using the simplest route.

 The lines on the floor have junctions which branch at 90 degrees (Figure 4.2).

Perpendicular junctions simplify the junction detection algorithm so that BuildBot can

easily distinguish junctions from curves.

 33

Fig.4.2. A straight line, a curved line, and a junction.

When walking, the robot tracks junctions and consults an internal map, in the

form of a matrix, which gives directions to each workstation. Once BuildBot reaches the

end of a line and has passed the correct number of junctions, it has arrived at its goal.

BuildBot then looks up and gently reprimands the team member by barking and growling.

This robotic reprimand will cease when the build is fixed, or when the robot senses a

touch on its head sensor.

4.2.3 Low-Level Implementation

The robot’s behavior is written in the C++ programming language, and controlled

via the Tekkotsu development framework (Tira-Thompson et al, 2004). Tekkotsu allows

developers access to robot and environment information, such as vision and sound

streams, temperature, velocity, sensor pressure, joint positions, and battery level. Other

information is accessible through the robot’s LAN connection. Developers can use this

information and write behaviours, components which describe the robot’s actions in

response to events. There are some default events, such as starting or stopping a

behaviour, but the developer can define a response to any information to which the robot

 34

has access. For example, if the AIBO ever falls on its back, an orientation-sensing

behaviour can ensure it gets back up.

4.2.3.1 Vision

The first step in implementing BuildBot’s behavior was to program the robot to

follow a single line on the floor. This was done by acquiring the vision stream via

Tekkotsu and thresholding the intensity values to create a binary array. The native values

of this array lie between 0 and 255, but rarely span that entire range due to lighting

conditions. The maximum and minimum values of the entire vision stream are then

calculated. Thus, the entire set of values is recalibrated with the maximum being

converted to 255 and the minimum converted 0, and all other values lying between the

two. By normalising the intensity values, differences in lighting can still result in a

readable array as long as the line contrasts sufficiently with the floor. If there is too little

contrast (less than 30/255 intensity, before conversion) between the minimum and the

maximum, the robot stops – the contrast is assumed to be too low or there is no

discernable line. Figure 4.3 contains some examples of flooring types as seen through the

robot’s camera.

 35

Fig.4.3. Examples of lines on different floors.
a) The contrast is too low: the robot is off course.

b) The line in a dimmer room. The robot can still find the line.
c) The line on a variable-colour carpet. The robot can still find the line.

d) The line on a lighter carpet. The robot can still find the line.

Problems can occur if there is an object or flooring pattern in the field of view

which affects the minimum and maximum contrasts. In such a case the robot will be

unable to find a line but will keep walking, following what it perceives to be the line.

The line detection algorithm is straightforward – every 100 milliseconds, the

midpoint of the binary one values (representing the line) in every horizontal row of the

binary array is computed (Figure 4.4). The mean of all the nonempty rows is calculated

 36

into a collective midpoint direction. If the resulting midpoint is off center, the robot will

rotate itself accordingly in order to compensate. The robot can also follow a curved line,

as long as the curve is not too sharp (between approximately -70 and 70 degrees).

Fig.4.4. An example of conversion. The image is normalized and a threshold is
applied to the image. The line direction (shown here in green) is determined by the
position and width of the white area of each horizontal row. In this case, the robot

would rotate right to keep following the line.

The line colour must be sufficiently contrasting with that of the floor – the best

choice of line colour is fluorescent pink. Pink has the highest intensity and is sufficiently

rare that there is a reduced chance of the robot mistaking some external brightly-coloured

object as the line. Fluorescent pink was not available, so in the test environment, our lines

were eggshell white. Despite this, the line tracking algorithm proved to be stable enough,

even under the inconsistent and changing light conditions in the laboratory.

 37

4.2.3.2 Localization and Navigation

After implementing the line-following component, the next step was to include

support for the detection of junctions. After the line direction has been detected, BuildBot

attempts to detect an intersection to the left, right, or in both directions.

The internal map inside BuildBot contains directions on how to get to each team

member’s desk by following the junctions. For example, in Figure 4.5 below, in order to

get to Craig’s workstation, BuildBot will turn left at the first junction, go straight at the

second, straight at the third, and left at the fourth. A ‘-1’ in the next junction indicates

that the preceding non- ‘-1’ value is the last valid junction. The ‘-1’ indicates there are

no more junctions; that is, the workstation is at the end of that branch.

Fig.4.5. An example of BuildBot’s internal map.

There are several mechanisms through which the robot can determine that it has

become lost. If the robot loses the line or if the lighting is too dim, the robot will check if

it has passed the correct number of junctions to be at the correct desk; if not, the robot is

assumed to be lost. Also, if the robot detects a type of junction at which its next turn

 38

instruction is not possible (for example, to go left at a right-only junction), it also

becomes lost. If the robot encounters a junction whose junction number is higher than the

number of junctions (a result of perhaps having wrongly identified a junction where there

was none, for example), BuildBot assumes it is lost. When it becomes lost, BuildBot

stops and calls for help by playing a quiet whining sound until it is placed back on its

power station.

BuildBot moves slowly in order to give the developer enough time to fix the build

before arrival at his workstation. In this case, the robot is able to turn around and head

back to its starting point, following the line back and keeping track of its location. The

algorithms for going to a desk and returning to the power station are almost totally

identical (see the following page for pseudocode for the high level junction tracking

algorithm), except for that the junctionCount variable is decremented rather than

incremented. When turning, BuildBot will turn in the opposite way to the direction

indicated on its map matrix when returning to the power station.

 39

// wait for signal from Continuous Integration server

if (signal == broken && at power station) { // build broken
 if(!seat number exists)
 whine
 else {

get up from power station
follow line
at every junction {
 if(junctionCount == -1 && returning to workstation)
 remount on power station

 else if(junctionMap[signal][junctionCount] == STRAIGHT)
 if(straight possible)
 continue following line
 else
 whine // lost
 else if(junctionMap[signal][junctionCount] == LEFT)
 if(left turn possible)
 turn left
 else
 whine // lost
 else if(junctionMap[signal][junctionCount] == RIGHT)
 if(right turn possible)
 turn right
 else
 whine // lost
 else { // end of the line

 sit down
 growl
 when build signal received
 if(still broken)
 keep growling
 else
 turn around
 follow line // back to power station

 }
 if(going to a workstation)

 junctionCount++
 else // returning from a workstation
 junctionCount--
 }
 }
}
at any time, if (power < 30%) { // override all other behaviours
 if(going to a workstation)
 turn around
 follow line back to power station
 else if(returning to workstation)
 follow line back to power station
 else if(growling at developer)
 continue growling
 turn around
 follow line back to power station
}

 40

4.2.3.3 Other components

After intersection detection, the major components of the robotic implementation

were completed. Aesthetic components, such as posture and barking, were added after the

major components were working reasonably well. Power sensing was added as well: if

the robot senses its battery power is at 30% or lower, it will return to its power station,

even if it was on its way to a workstation.

The continuous integration server sends the build status (and, if broken, the last

person to upload code resulting in a state change to a broken build) to BuildBot through

the wireless LAN. BuildBot’s internal map contains locations in the form of desk

numbers. If the build breaks, the message sent is the location number of the developer’s

desk. If the build is successful, nothing is sent.

BuildBot was designed as a fun form of ambient notification in mind. It was

tested alongside two other forms of notification in two separate evaluations. The studies

and their results are described in chapters Five and Six.

 41

Chapter Five. First Evaluation

 In order to determine developers’ reactions to the different notification techniques,

two evaluations were conducted. The first evaluation, described in this chapter, describes

quantitative results such as average reaction times to the different alerts, as well as

participants’ feelings toward them. The longer-term second evaluation, in which

participants use the alerts in the context of the continuous integration of a project, is

detailed in Chapter Six.

The first evaluation is described in detail in the first part of the chapter, and the

results presented and analysed in the second.

5.1 Context and Approach

 This first evaluation was performed to determine developer’s reactions to

different notification mechanisms in an informal academic environment. Specifically, the

goal was to gauge how effective each device was: how long it took each person to notice

each one, and if they noticed it at all.

In this evaluation, the participants were not involved in the same project, and the

alerts were sent out randomly. The purpose of this study was to assess the effectiveness

of certain notification mechanisms, and to explore the effect each had on the participants.

 42

These notification mechanisms would be potential candidates for use in a development

environment for notifying the developers of a build break.

5.1.1 Participants

Two parts of the first evaluation were performed with a peer group of graduate

students. The first was done with 4 developers, and the second a group of 10 developers.

5.1.2 Scheduling

This study was performed on two different days. On the first day, the four

participants had not seen the robot or the lava lamps in action. On the second day, the ten

participants had seen the robot and lamps in action before and thus the novelty effect was

reduced.

5.1.3 Location

The study took place in an academic laboratory with the layout shown in Figure

5.1:

 43

Figure 5.1 The laboratory layout for the first evaluation.

5.1.4 Study Implementation

The participants were allowed to work as they would normally. This includes

pair-programming, using an email notification program, wearing headphones and/or

listening to music. This altered the chances of some participants noticing the different

 44

notification mechanisms, but was done in order to observe the developers working in

their environment.

Three types of notifications were tested in this first evaluation. An entirely virtual

notification in the form of an email to all participants, an ambient device in the form of

Java Lava Lamps accompanied with an email to all participants (see the Previous Work

section), and an active alert - the deploying of BuildBot to one of the developers

accompanied by an e-mail.

The first notification mechanism, email, was sent with the message “BUILD

BROKEN” to all developers. No physical notification of any kind accompanied this

email.

The lava lamps were displayed in a prominent position in the development area so

that any developer could see it from their desk (some had to turn around to see them, as

they were facing the opposite direction). They were switched off or on (switching the

illuminated lamp from red to green or vice-versa) via a remote control, and this was

combined with an email alerting all developers. The mechanism controlling the lava

lamps’ power source makes a clicking sound when the switch occurs, so this also alerted

the developers via sound. The third mechanism, BuildBot, was deployed to a developer,

selected randomly, and this was accompanied by an email only to that developer.

 45

The case in which the build is successful, where BuildBot does not move from its

starting location, was not tested with developers. This is because the absence of the

robot’s movements is an indication that the build is successful. This study was aimed at

determining the effectiveness of different mechanisms – how long it took developers to

notice each of the three kinds of notification.

While the participants worked at their workstations on their individual tasks,

which were unrelated to each other, a notification of one of the three kinds mentioned

above was sent out. The participants were instructed to notify the study facilitator

privately, using an instant messaging program when they noticed the robot, received an

email, or noticed the lava lamps had changed their state. Sending an instant message

ensured that other participants did not become aware of a change through this

communication, potentially affecting the results.

The results from this first evaluation are described below.

5.2 Results and Discussion

The results of the first evaluation were as follows: When the email was sent, only

the two who had email notification programs noticed within five minutes. In one case,

just before the experiment finished, one person checked for email and saw all the email

notifications at once.

 46

Generally, when the lava lamps were switched in conjunction with the email, only

one person heard the click of the power switch, in this case he did not have a clear view

of the lava lamps from his desk. Of the people who responded to the change, half had

noticed the lamp had changed, and half had only received the email. The two respondents

who responded to the sight of the lava lamps were getting up and walking around the lab

when they noticed the lamps had changed.

When BuildBot was deployed, all four participants were alerted by the sight or

sound of the robot walking. Three out of the four participants noticed when the robot was

near their desks.

 The participants did not seem to notice the lava lamps, even though they are in a

prominent location, visible to as many people as possible. However, when BuildBot was

deployed, the combination of sight and sound resulted in all participants noticing the

robot when it was near their desk. As a result of this, every participant agreed that the

robot was a distraction. However, every one of the participants also either agreed or

strongly agreed that the robot also contributed to a fun atmosphere. We observed that the

energy in the room increased noticeably when the robot was walking to a developer’s

desk – people got up and started talking, walking around, and wondering what was going

on.

During the second evaluation, the results were more polar. The lamps were

switched six times during the course of the second day of the first evaluation, and one

 47

participant noticed only one of these changes - when this participant returned to the room

and found the red lava lamp lit. The robot, on the other hand, was sent out twice, and both

times, eight out of the ten respondents noticed it. The respondents who did not notice the

robot were out of the room when it ran.

During both days, the developers nearest to BuildBot noticed it when it was near

them, even if it was on the other side of a cubicle wall. On the first day, it took

participants a mean of 5.1 minutes to notice BuildBot. On the second day, it took

participants a mean of 3.3 minutes.

For some participants, especially those listening to music or talking to other

people during the study, they did not notice the robot until it was near their workstation.

Some participants were more distracted by the robot’s movements because their desks

face outwards, towards aisleways the robot used to arrive at different desks. It was

observed that participants who did not find the robot’s movements distracting had desks

that faced the walls of the lab and not the aisleways where the robot was likely to be

present.

Figure 5.2 shows the data collected from the post-study questionnaire. This

questionnaire is listed under Appendix A.

 48

Figure 5.2 The post-questionnaire results from both days of the first evaluation.

Developers were easily alerted by the movement of BuildBot, but found it

somewhat distracting when the robot was in motion. Despite this, most developers felt

that the robot contributed to a fun atmosphere.

From these results, we can see that generally, BuildBot was more effective at

alerting developers when a change occurred. Although it was somewhat distracting, most

developers felt that BuildBot contributed to a feeling of fun.

 49

The second evaluation, in which the alert mechanisms was tested over a series of

weeks, and in the context of a project, is described in Chapter Six.

 50

Chapter Six. Second Evaluation

6.1 Study Objectives

 The goal of the first evaluation was to gauge the reaction times and impressions of

participants as they worked on projects unrelated to the alerts. However, a more thorough

study was needed – one in which the alerts meant a broken build. The goal of this longer

and more structured study was to gauge the effect on the developers.

Unlike the first evaluation, the developers were all working on a single project,

AgilePlanner. Instead of the alerts being random and mixed, one single alert mechanism

was used for each part of the study. The alerts were not random either – an alert occurred

only if the Ant script compiling, deploying and testing the software resulted in a broken

build. The purpose of this study was thus to assess the effect these notifications had on

the development team as they worked on developing a piece of software together.

Moreover, the goal was to evaluate the team’s overall impression of BuildBot as a tool in

the context of agile software development.

6.2 Study Description

As in the first evaluation, three types of notifications were tested. For Part I, an

email was sent to only the developer responsible for the last code commit and the

 51

research facilitator after every commit. The project manager was sent an email only if the

change resulted in a build state change (from unsuccessful to successful, or vice-versa).

For Part II, the Java Lava Lamps were installed in the laboratory and the lamps

were powered on or off depending on the build result (as described in Chapter Two:

Previous Work). This was accompanied by an email, identical to Part I.

For Part III, the lava lamps were taken down and BuildBot was placed on its

power station. Email was also sent in an identical fashion to Parts I and II.

6.2.1 Participants

 The formal evaluation involved an agile team in an academic environment

developing an application called AgilePlanner. This software has been under

development for about 48 months, by both interns and graduate students.

There were two groups involved in this study: the developers and the observers.

The eight developers were those actually working on the AgilePlanner. There are three

full-time developers and five graduate students working part-time on the project. Five of

the eight developers had used an email-based system of build notification for previous

projects; two had no experience with build notifications. All developers had used Java for

a year or more. Five of the seven developers had used JUnit for a year or more; one had

used JUnit for two months, and the other had not used it at all. Of these developers, all

 52

but one participant used some kind of email notification program (e.g. Google Talk,

Adium, MSN Messenger, etc). Email thus served as a alert mechanism for these

developers, and as a polling interface for the one developer not using any such program.

The observers were those individuals co-located in the laboratory but not actually

participating in development. These individuals were able to observe the effects of the

different notification mechanisms on the developers. There were six observers, but not all

were available for the entire length of the study, so only those who were in the laboratory

for the full length of each part were included in the results for that part. Because the

observers were not directly involved in the project, their knowledge of the build was

based solely on cues within the lab, including conversations between developers, or build

notifications. They were included to get an outsider’s view of the project and its build

state – possibly a co-located non-developer who may be interested in the build status, or a

customer.

6.2.2 Scheduling

The study took place on weekdays between the hours of 09:00 and 17:00.

The study was partitioned into three parts. Part I of the study tested the email

notification alone. Part II of the study involved the Java Lava Lamps combined with the

email mechanism in Part I. Part III of the study tested BuildBot as well as the email

notification in Part I.

 53

6.2.3 Location

 The study was performed in the same area as the first evaluation, but the robot’s

power station was moved to a different location, as illustrated in Figure 6.1. The station

was moved to balance the time the robot took going to each desk. With the setup in the

first evaluation, in which the station was situated in a nook between Developer 1 and

Developer 2’s desks, going to Developer 1’s desk only took a minute, where moving all

the way over to Developer 8’s took substantially more time – 10 or more minutes. The

top of the map is a hallway so there was a danger that people would trip over the robot if

its station was placed there, so it was moved to an open area near Observer 1’s desk.

 54

Fig.6.1: The layout of the laboratory. D indicates a developer and B indicates an
observer (O is not used because it can be confused with the numeral 0)

The lava lamps and robot were tested independently of each other and were
removed during the days they were not being used.

Some individuals had a better line of sight to the lava lamps than others. Example

lines of sight from different developers are shown in Figure 6.2.

 55

Fig.6.2: Line of sight from different developer workstations. From some
workstations it is possible to see only the caps of the lava lamps, from some they are

blocked entirely, and from others they are visible only by turning around.

6.2.4 Implementation

A continuous integration server was already in place, using an Ant script to

compile, deploy and test committed code. The developers, as well as the project manager,

were being alerted only to build breakages via email (sent via the Anthill continuous

integration suite [Anthill 2007]). The application was deployed on a JBoss web server

(JBoss 2007).

 56

6.2.4.1 Guidelines for Developer Participants

 The development team who participated in this study had been using Agile

methods to develop the project. Some guidelines had to be enforced for the sake of the

study.

As with the first evaluation, the participants were allowed to work as they would

normally in order to have the least impact on the development effort. This includes

sometimes pair-programming, using an email notification program, wearing headphones

and/or listening to music. This altered the chances of some participants noticing the

different notification mechanisms, but was done in order to observe the developers

working in their environment. Some developers preferred to work at home, but were

requested to work in the laboratory whenever possible.

 Occasionally, when developers working on a project do not check the build status

before they check-out code or commit new code, they can inadvertently cause problems.

Specifically, BuildBot will go to the desk of the last person to break the build. If

Developer A commits bad code in Class X that breaks the build, and Developer B

uploads working code for an unrelated class Class Y shortly after, BuildBot will go to

Developer B’s desk, because that developer was the last person to submit code that

resulted in a broken build.

 57

To prevent this, a commit token was introduced. The commit token used in this

study was a stuffed red mouse (Figure 6.2). It was hoped that this kind of playful commit

token would also add to the atmosphere of fun and playfulness in the development

environment. However, during the second evaluation, the number of developers was

small enough so the commit token was not actually used. There were no conflicts

between commits during the evaluation.

Fig.6.3: A developer working with the commit token (left), and the commit token
itself (right).

 For the commit token to be effective, the following guidelines were set:

o In order to commit code, a developer must have the commit token. They

must acquire it from the developer who has it in his possession.

o That developer with the token may not release the token to another

developer unless the build is stable and passes all tests.

 58

6.2.4.2 Java Lava Lamps Implementation

 As in the first evaluation, the lava lamps were displayed in a prominent position

in the development area so that any developer could see it from their desk, although some

had to turn around to see them, as they were facing the opposite direction. In the first

evaluation, the lava lamps were controlled manually via remote control, but in the second

evaluation they were automated to the show the build status.

To integrate Java Lava Lamps into the development process (shown in Figure 6.3),

the continuous integration server has a wireless interface module plugged into its serial

port. This module sends a signal (to supply or deny power to one of the lamps) to the x10

transceiver. The transceiver is connected to one of two lava lamps, and relays the signal

to the x10 module connected to the other lamp. Two signals are sent every time

continuous integration occurs – the first signal turns one of the lamps off and the second

turns the other lamp on.

 59

Figure 6.4. Setup for Java Lava Lamps.

The end result is that only one of the lamps has power at any given time. In the case of a

successful build, the green lamp is turned on and the red is turned off. In the event of a

build break, the red lamp is turned on and the green is turned off.

An x10 controller (x10, 2007) was used to control power to the lamps, and the software

was written in Java, using Michel Dalal’s Java library (Dalal, 2003) (this library takes

care of the commands in the form of bytes being sent to the tranceiver).

 60

6.3 Evaluation Results

The following section outlines results from each part of the study in detail, and

then the results of the entire study. The discussion of the results will follow in Chapter

Seven.

 In the first week of the evaluation, a total of ten commits were recorded. In the

second week three commits, one of which was a failure, were recorded. The third week

saw ten more commits, one of which was a failure.

6.3.1 Results for Part I: Email Only

 Eight developers and four observers participated in Part I of this study. The results

here are from the Part I post-questionnaires and the interviews for each participant.

There were three main ways a participant could become aware of the build status.

They could receive an email (if they committed code), check the build status page, or

hear from other people about the status of the build. Five of the eight developer

participants indicated they were notified more effectively by email than by polling the

build status page. Two observers overheard conversation about the build status. Two of

the developers did not receive emails, did not check the build status page and were not

 61

alerted by other people about the state of the build. They were totally unaware of the

build status.

Six of the developers indicated that they found the email fairly distracting or very

distracting. Two of the respondents indicated they did not find the email distracting or

found it a bit distracting.

Three of the eight developers and one of the four observers indicated that their

ability to perceive things going around them was affected – they listened to music with

earphones while working. Generally, those who were listening to music were not as

aware of the build state as those who did not listen to music.

The data for the first week is shown in Figure 6.4 below.

 62

Figure 6.5 Part I Results - Notification

6.3.2 Results for Part II: Email and Java Lava Lamps

 One of the part-time developers was unavailable, so seven developers and five

observers were included in the second part of the study.

For the developers, half were better notified by email and half by either the colour

change or movement of the lava lamps. While some participants did check the build

status page and some were alerted by other people, all participants were alerted more

effectively by either the lava lamps or by email. These results are shown in Figure 6.5

and 6.6 below.

 63

Fig.6.6: Part II Results - Notification – Developers

Fig.6.7: Part II Results - Notification - Observers

 The developers generally found neither the sight nor the sound of the lava lamps

distracting. The same was true for the observers, as they were generally too far away to

be distracted by them.

 64

 Three out of the seven developers indicated they had a clear view of the

lava lamps from their workstation, and three indicated a blocked view (Figure 6.7).

Developer 7 and Developer 4 indicated they had blocked view of the lava lamps but

received emails on alert via an email notification program (such as Google Talk, MSN

Messenger, etc). They were thus able to keep track of the build that way. Developer 11

also polled the build status page for updates.

Figure 6.8: Part II Results - View of the Java Lava Lamps from workstation and
awareness of the build.

As shown in Figure 6.7, there is a loose relationship between a clear view of the

lava lamps and the awareness of the build. In general, if the participant had a blocked

view of the lava lamps and was listening to music, he reported a lower awareness of the

build. Conversely, if the participant had a clear view of the lamps and did not listen to

music while he worked (Figure 6.8), a higher awareness of the build was reported.

 65

Fig.6.9: Part II Results – Perception of Surroundings

 It is essential to examine each of the participants’ experience over the entire study.

For example, participants who committed more often (the full-time developers 3, 4 and

5) had a better idea of the build since they committed code more often thus were the

recipient of an email notifying them of the build status. Observers, not being part of the

development process, naturally have a lower awareness of the build.

Some developers and observers indicated that they were able to see the lava lamps

more easily when entering or exiting the room since some individuals were unable to see

the lava lamps from their desk due to the cubicle layout of the laboratory. Nine of the

participants indicated they found that the lava lamps contributed to a fun atmosphere

 66

(Figure 6.9). Even though some participants could not see the lamps, they still felt that

their presence made the development environment a more fun place to work.

Fig.6.10: Part II Results - Perceptions of Java Lava Lamps

Observers, situated quite far away from the lamps and out of visual range, did not

find the sight nor the sound of the lava lamps distracting. Developers, especially those

situated near the lava lamps indicated they were mildly distracting; these results are

shown in Figure 6.10.

 67

Fig.6.11: Part II Results - Java Lava Lamps’ audio and visual distraction

 Overall, the lava lamps contributed to a fun atmosphere generally without

distracting the participants – though this may have been due to the novelty effect. Due to

the cubicle layout of the development laboratory (and thus some of the participants being

unable to see it), this limited its effectiveness in this environment.

6.3.3 Results for Part III: Email and BuildBot

 During the third part of the study, the lava lamps were removed from the

development area and BuildBot was placed on its power station. There were eight

developers and four observers who participated. Developer 1 was in the lab at off-hours

 68

and so did not have a chance to observe the robot, but was able to make observations

about it from the first evaluation.

Only two participants of the twelve felt they were aware of the build at all times,

as shown by Figure 6.11. This may have been due to the lack of constant, ambient

communication about a positive build status – besides the build page, only by getting up

to find the robot could they find out the status on the build.

Fig.6.12: Part III Results – Build Awareness

 Developers were again asked about their awareness of their surroundings, and the

responses are shown in Figure 6.12. Unlike the lava lamps, which did not use sound to

convey build state, BuildBot used sound as well as motion.

 69

Fig.6.13: Part III Results – Perception of Surroundings

 From the interviews and the questionnaire, it seemed that generally, those who

found the robot to be a distraction (from sight, sound or both – Figure 6.13) did not find it

contributed to a fun atmosphere (Figure 6.14). There were those who enjoyed BuildBot

despite being distracted, but these participants may have been more willing to accept the

distraction, or be able to work despite such distractions.

 70

Fig.6.14: Part III Results – BuildBot – audio and visual distraction

Fig.6.15: Part III Results –Perceptions of BuildBot

 71

6.3.4 Final Results: Comparing All Three

 After the third week, participants had seen each of the notification mechanisms in

action and were able to compare them. Each participant indicated what aspect of the

notification devices notified them most effectively. Email notifications were indicated by

4 of the developers (one developer was notified by another person who received the

email), build status page notifications were indicated by one person, and two people

indicated the robot most effectively notified them (Figure 6.15).

Fig.6.16: Part III Results - Developers

 72

 The observers were all notified by sound, either from the robot’s joints or from

the non-joint noises (such as the initial sound notification, or the growling noise the robot

makes when it arrives). Figure 6.16 illustrates this.

Fig.6.17: Part III Results - Observers

 Some participants indicated that the robot added to a fun atmosphere, even though

it was a bit distracting for them. They welcomed the diffusion of a potentially tense

situation. Others did not find the robot very fun at all, and found the distraction very

unwelcome. Some liked both email and BuildBot equally because they offered different

but important advantages. Generally, the participants who preferred email were those

who worked at home as well as in the lab. Figure 6.17 illustrates the developers’

preferences.

 73

Fig.6.18: Part III Results – Preferred notification device - Developers

Figure 6.18 illustrates that the observers had a more positive view of the robot.

This may have been due to their distance from the robot’s path – they were less affected

by the joint noises. Also, the possibility exists that because many of them had not seen

the robot in action before, the novelty effect would give them a more positive impression.

Also, since none of the observers received any emails, none of them chose that option.

Fig.6.19: Part III Results – Preferred notification device - Observers

 74

 The qualitative results below were taken from interviews with the developers and

observers who participated in this study. The quantitative results were obtained through

participants’ responses to questions in Likert scale format.

Throughout the entire study (all three parts), participants could see the build status

anytime by checking the build status page. This is a pure polling mechanism, and not one

participant used it. According to Developer 1, “going to the website is not my idea of a

notification system. It defeats the purpose.” During the first week, even when the

developers did not commit and thus were not receiving emails, they did not check the

build status page.

 There were also concerns about the reliability of the Ant scripts used. Developer 2

was leery about trusting notification systems: “in my experience with Ant scripts, they’re

so flaky that I have a hard time trusting that everything went to fruition 100% of the time.

Just because the robot’s not moving, doesn’t mean the build status is 100% correct.”

Developer 2 also added that “I don’t trust Ant scripts. A lot of the time they can die

silently.”

6.3.4.1 Positive and Negative Aspects of Email

 Email was popular with the developers because of the information that each email

contained. As shown in Figure 2.4 (in Chapter Two), the emails are very detailed,

showing thrown exception messages, failed tests and other useful information. Developer

 75

3 liked that “[email] elaborates in detail, like what went wrong, where”, and similarly,

Developer 4 thought that “email has more information in it” to help them solve the build

breakage.

 Another advantage of using email is that it is, barring server or connection

problems, instantaneous and direct. Email recipients can receive the message

instantaneously, especially if they are using an email notification program (like MSN

Messenger or Google Talk). This takes advantage of email’s dichotomy as a polling

mechanism that can also act as an alert. Developer 5 expressed that “as soon as we get an

email, we get a popup message, and we like immediately get to know that there is a build

fail, because it’s written in that popup.” Knowing this information instantaneously is

important to the other developers, as Developer 2 articulates: “I want to know right away

if I committed some code that broke some tests, or something bad.”

 Participants also liked that email was not dependent on location; according to

Developer 1, “The email was the better of the three because I don’t have to be in the lab

to get notified if something goes wrong.” Developer 2 agrees: “the obvious benefit is that

I can be at home and receive an email, I can be in China and receive an email, I can be

at my desk and receive an email. No matter what I do I can always receive emails to

make sure I didn’t break it.”

 Additionally, emails are silent and non-interfering with others in the same

workspace. Developer 1 said “What I liked about the email notification is that it’s non-

 76

intrusive. It shows up in your inbox if you’ve got an email notification system.” For other

developers working in the same area on different projects, they will not be distracted by

information transmitted via sight or sound.

 Email also has some disadvantages to it, such as its dependence on the user

running email programs and notification clients. Developer 6 expressed that “I might not

perceive that there is new email because I don’t check my email box from time to time.

Every 5 minutes? No, I don’t do that, maybe every hour. So if the build is failed I didn’t

know that.” Potentially, if a developer is not running an email alert program, they may be

unaware of a critical build failure.

A danger with email is the potential for it to become spam. Developer 4 liked

emails but expressed that “too many emails make me crazy”. Even though a positive

email message to everyone informing them of a passed build may be appreciated,

Developer 8 would caution the overuse of email in this way: “I think it would be

annoying, to be more than honest. It would leave me with a sense of being spammed.”

6.3.4.2 Positive and Negative Aspects of Java Lava Lamps

 The lava lamps are a notification mechanism that diffuse information within a

wide area without being intrusive. Developer 2 noted that “It’s a really cheap thing, you

can just set it up, download your open source software, you set it up, and away you go.

Any company can do that.”

 77

 The lava lamps were also a fun addition to the lab without being distracting. The

participants generally liked their appearance, and thought they added fun to the

development environment. They were also quiet and unobtrusive.

 Unfortunately, many developers and observers did not immediately notice the

lava lamps. The office is set up in an ‘open cubicle’ fashion, with four people sharing one

large cubicled area. The walls are six feet tall and opaque. At each workstation, there are

cabinets that can potentially block the view of the lava lamps. Also, some developers had

their backs to the lamps. This makes the lamps less ambient than they should be.

Developer 1 said that “I have my back to them, and they’re above my eye level when I’m

sitting, so I have to physically turn around and look up”, and Observer 2 noted that “they

needed more flashy things to catch your attention.”

Similarly, since the lava lamps were only in one small area in the room, they were

unfortunately not very noticeable. The bubbling was not noticed by any of the developers

at all – as Developer 3 expressed, “I’m working on my system and I don’t get attention to

notify that lava lamps are red or green. That’s why the lava lamps didn’t help me much.”

Developer 8 said that it was no problem to just turn and look at the lamps: “it was really

accessible because I could see the lava lamps and in a second I’d know, if I took the time

to turn around and look behind me.” For those out of sight range, the lava lamps became

a device in need of polling because of their inaccessible information. Developer 5 noted

that “as long as it’s in sight range, it’s good enough. Otherwise, of course, no-one will

 78

get up from his seat and see the lamps every 10 minutes.” Some participants, like

Observer 1, noticed the lamps when walking back to their workstation: “if I’m away from

my desk, walking back from desk, you know they’re very visible so I can really notice

them.”

Developer 4 liked the lamps but commented, “funny but information here is

limited. Just like the lava lamps only have two colours – green and red – that

demonstrates 0 and 1, not as good as email. Email has many texts.” In addition,

Developer 6 expressed that “[if] it is red, I’m not sure whether it is me [that was

responsible for breaking the build].”

 Additionally, the lava lamps do not help a developer who is working from a

remote location. Developer 2 noted that “Lava lamps… won’t help me if I’m working at

home. And a lot of people do work at home.”

6.3.4.3 Positive and Negative Aspects of BuildBot

 BuildBot was popular among some developers and observers because of the fun

factor (and most likely a bit of the novelty factor as well). Developer 8 noted that “I liked

the robot because it typically made a bad situation fun. Breaking a build is never a fun

thing, because you know you have to fix it, and it sort of added a playful edge to it.”

Observer 1 said that “[BuildBot] makes the atmosphere a little more fun, cos it’s kinda

 79

like a joke… ‘ha ha ha, you broke the build’”’ Developer 3 felt that despite the

distraction, BuildBot was fun and “a positive thing to relieve your stress.”

 Even though the robot was seen as distracting by some developers, not all found

this distraction to be a negative thing. Developer 6 sees distraction to be a part of working

in a lab with others: “when I’m working, somebody may be talking, so that’s a distraction.

I can put my headphones on.”

 The robot’s message was very accessible according to Developer 8, who noted

that “it’s accessible because it comes to you. In other words, it’s very visible when it

comes to you, as opposed to the lava lamps, because you’re getting both sight and sound

as a notification.” Developer 2 expressed that “BuildBot is cool because it’s a little bit

different from what you see normally, and you can hear it coming, which is kind of nice.”

Observer 4 said that BuildBot “[is] easy to notice, it’s interactive, it’s kind of novel”

However, when asked to elaborate about his impression of the robot should the novelty

effect wear off, Developer 1 responded that “initially it would be the novelty effect, and

over time it would just become annoying, more than anything.”, and after a few runs of

the robot “I would probably be cursing at the dog.”

 As Developer 1 notes, the obvious downside to BuildBot is the fact that it notifies

everyone around the lab – whether the information is useful to them or not. Observer 4

noted that “it does cause some commotion – if you’re focused on something, and trying to

work on something, it can be distracting.” Similarly, Observer 1 expressed that “it is

 80

distracting. If it’s in the far corner, that’s like 5 minutes to walk there and 5 minutes to

walk back, and you can hear the motors throughout the entire lab the whole time…”

Observer 1 also suggested that an improvement to BuildBot might be to “make the joint

noises on the robot quieter”.

 A side effect of these noisy joints is that it causes commotion as people get up and

“[get] more restless… looking to see what it was” (Developer 1). It thus distracts by joint

noises and by people getting up to investigate the joint noises.

Developer 2 expressed concern with BuildBot’s singling out of individual

developers after a certain time period: “what’s the difference between a robotic dog

giving you hell and a manager giving you hell? Like a manager may be a little bit angry

but generally they’re not.” Observer 3 was notified not just by the sound of the robot’s

joints, but “also the commotion caused by other people in the same area who were

laughing, pointing, giggling at said programmer [who broke the build]”. While this is

“all in pretty good fun” and “a healthy embarrassment” according to Observer 3, I

believe this could cause some developers stress and could negatively impact the team.

 An issue for some participants was the lack of positive notification. Observer 2

“wasn’t entirely sure at all times if there was a problem or not.” because there was no

notification whatsoever if the build passed.

 81

 With the mixed reviews of BuildBot, companies may wonder about the feasibility

of spending a potentially large amount of money on purchase and setup of it. Developer 2

articulates this point: ‘I don’t know how many 4-person companies are going to be able

to afford an AIBO to have the BuildBot walk around. And out of the money they’re going

to spend – I think even a big company’s going to say, “what’s wrong with lava lamps?”

The price of having a manager walk around and do it is probably cheaper than having

BuildBot do it!’

 The original goal of BuildBot was to bring together the advantages of aspects of

human-computer interaction and human-robot interaction to create a more effective build

notification device for an agile software engineering environment. It was hoped that

presence, sound, motion and fun could enrich the development environment and more

effectively alert the developers to a broken build. The results of this second evaluation

show that quantitatively, BuildBot is a more effective, but also a more distracting and a

more complex, build notification mechanism. Qualitatively, some developers liked the

idea of having a robot, but others found it an unwelcome addition to the environment.

 82

Chapter Seven. Discussion

 In this chapter, some questions with regards to the development environment will

be addressed.

7.1 Development Environment Culture

7.1.1 What happened to the commit token?

The robot’s behaviour is not equipped to handle a situation in which one or more

developers commit new code to an already broken build. The robot’s behaviour cannot

determine which developer is responsible, and can only visit one desk at a time. The

commit token was an attempt to avoid this situation during the second evaluation. A

commit token is a common practice meant to restrict developers from freely committing

code. In theory, it prevents multiple developers from compounding the bugs in the code,

since commits can only be made to a clean build.

The group of participants had attempted to use the commit token before, but it had

not been successful. Similarly, during this study, it was not used. During the study, it

appeared that the commits were not done often enough to warrant the token, and thus the

participants did not use it.

 83

7.1.2 Should the development environment be fun?

Some participants preferred a quieter environment that is more conducive to

productivity. According to Developer 1, “you’re trying to work and suddenly you hear

something moving, and it’s not your typical lab noise, so it was distracting”. Developer 1

also stated that, in response to a question asked regarding the robot adding to a fun

atmosphere, “I don’t think work should be in a fun atmosphere. If I’m trying to be

productive I don’t want to necessarily be having fun. When I’m distracted and not doing

work, I’m annoyed. So it’s not really fun.” On the other hand, according to Developer 3,

“I think your work environment should be kind of a fun environment, and then you will

remain positive and you will work better.” For Developer 5, not all distractions (and

specifically, the ones due to BuildBot) are negative: “It’s like the distraction means you

go from a serious mood to a fun mood for a couple of minutes.”

7.2 Notification Device Alternatives

Many developers liked the idea of the lava lamps but were unable to see them

properly because of the cubicle walls. Observer 4 noted that a possible improvement to

the lava lamps would be to “make them visible from everywhere… make them bigger,

brighter, or something.” A possible candidate is a light source that can be visible from

many or all parts of the laboratory. An inexpensive colour-changing rope light affixed to

the ceiling may be another ambient device to try in a future study. Another candidate

would be a smaller set of lights at each developer’s desk.

 84

Another concern brought up by Developers 1 and 2 was that the broken build

notification does not provide indication that the problem is being fixed. Furthermore, the

timing could be changed to accommodate developers attempting to fix the broken build.

Developer 1 stated that the lava lamps are not “a very positive notification mechanism”

and elaborated: “I’m really not a project manager, and I don’t know how much they care

about the status of the build in the middle of a development cycle. If you’re always

adding new code in the middle of a development cycle, if the lava lamp’s red but you’re

working on a fix, all the project manager who just walked in the room knows is that the

build’s broken, but not that you’re working on a fix for it… It might be that the project

manager will come in and interrupt your work and your train of thought when you’re

trying to solve the problem, and then you block that train of thought.”

 85

Chapter Eight. Conclusion and Future Work

Robotic technology is not at the point where BuildBot is feasible for use in an

agile software development environment, and it is questionable whether it will become

feasible in the near future. Judging by the feedback from the participants in this study, the

robotic implementation as presented herein is too complex and costly to be a realistic

option for development teams in industry. Moreover, there are other less obtrusive means

of notification, such as ambient illuminated rope lighting or virtual system tray alert, that

are valid alternatives and could be tested in future studies.

The developers seemed to like all three notification devices, but BuildBot had the

most potential for strife due to the distraction factor. Given the cost of the robot, the

AIBO’s loud joint movement, and the inherent complexity of the system, it is at this point

not feasible to introduce to an agile team. Perhaps, if BuildBot is improved and

implemented on a more advanced robotic platform, it may become feasible for use in

such an environment.

 86

8.1 Conclusion

 “…Because that’s the biggest part, right? It’s awareness. It’s not the fact that I

need to fix it in this amount of time. It’s to be aware of the problem.”

 - Developer 2

There is much work to be done in the area of continuous integration notification

mechanisms and its effect on the agile software engineering environment. There are

many different mechanisms that can be tested in further studies. Examples include pagers,

visits from project managers, multicolour rope lighting, or system tray alerts.

Notification of the build status of a project is very important – not only for team

solidarity but for each developer’s own benefit. Developer 4 expressed that “build

notification is very useful because it will make me aware of the process of the whole

project and the status. It is important and I like that.” Three different notification systems

were tested in this study – a totally virtual email notification, an ambient lava lamp

system, and a mobile robot.

It was hoped that BuildBot could keep the development team focused on the task

at hand, that is, to efficiently develop software whose components work together

seamlessly. While the robot has the potential to increase morale in this way and to keep

the social environment more engaging and fun for the agile developers, it depended upon

the developers’ attitude toward their work environments. Those who liked a more fun,

 87

lighthearted environment liked BuildBot despite its tendency to distract, but those who

wanted a quiet environment conducive to productivity disliked the robot. If all members

of the team are in favour of implementing BuildBot, that may be a good opportunity to

implement it. However, to impose something as potentially disruptive on an agile team

would not be in its best interests.

8.2 Future Work

 A longer-term study is necessary to examine the long-term effects of different

build notification mechanisms. The study should also be performed in an agile industrial

environment.

 In this study, only two states were shown on each of the devices: a successful

build and a failed build. There are, however, different types of failures (Deng et al, 2007),

and for this study they were all grouped into one category – failure. Giving developers

more information about the failure via an ambient device may make the devices more

useful.

A future improvement would be to add notification that the build is being fixed.

For example, a third lava lamp could be used to signal this status. Developer 2 suggested

a solution: “For me, it seems a better approach would be I break the build, you send me

an email, and I have a button I can click on here saying ‘I’m notified of this problem and

I’m trying to fix it’, because I can’t fix every problem in ten minutes. And then, as long as

 88

I actually notify them that I’m aware of the problem and in the process of trying to fix it,

then the dog shouldn’t come and harass me, just because I can’t do it in ten minutes.”

As for BuildBot itself, there were several points of improvement that were

mentioned by participants in the study. One complaint is that BuildBot takes too long to

reach the workstation, irritating everyone on its way over. Many developers who did like

BuildBot didn’t like the slow movement. Developer 6 pointed out that “[If] the dog is

walking towards me, and maybe barking at me, that means I’ve made some mistake. I like

that idea. But the problem for the robot is that is walking slowly, so everybody’s waiting

for that. So it’s a waste of time.” Developer 7 noted that “I like to have a quiet

environment, so that I can focus on my programming. I don’t mean that there was a big

distraction, but somewhat like a distraction. It took a long way for the robot to walk

towards me or the other people sitting around me.”, and similarly, “it’s distracting, and if

it walked faster it would be better. Because it’s a long way, and you will hear the sound a

long time if you don’t have headphones on.”

 89

References and Citations

Ambient Devices’ Ambient Orb, http://www.ambientdevices.com/cat/orb/orborder.html

Anthill Pro build management system.
http://www.anthillpro.com/html/products/anthillos/default.html

D. Astels, 2003. Test-Driven Development: A Practical Guide. Prentice Hall, PTR, Upper
Saddle River, NJ

D. Astels, G. Miller, M. Novak. A Practical Guide to eXtreme Programming. Prentice
Hall PTR, Upper Saddle River, NJ, 2002.

S. Baker. Agile in Action: Information Workspace. 2005.
 http://www.think-box.co.uk/blog/2005/08/informative-workspace.html

K. Beck. Extreme Programming Explained. Addison-Wesley, 2000.

M. Bohlen and M. Mateas. Office Plant #1. LEONARDO, 31:5, November 1998, pp 345-
349. http://www.lcc.gatech.edu/~mateas/publications/Leonardo1998.pdf.
http://www.ehiprimarycare.com/news/item.cfm?ID=2102

C. L. Breazeal. Designing Sociable Robots (Intelligent Robotics and Autonomous
Agents). The MIT Press, 2002.

Cactus http://jakarta.apache.org/cactus/

JJ Cadiz, G.D. Venolia, G. Jancke,, and A. Gupta. Designing and Deploying and
Information Awareness Interface. Proceedings of the ACM Conference of Computer-
Supported Cooperative Work (CSCW 2003). ACM Press, 314-323.

J.J. Cadiz, G.D. Venolia, G. Jancke, A. Gupta. Sideshow: Providing peripheral awareness
of important information. Microsoft Research Technical Report MSR-TR-200181, 2001.

CruiseControl. http://www.cruisecontrol.sourceforge.net (Accessed February 2007)

Mike Clark’s Build Automation Blog. http://www.pragmaticautomation.com/cgi-
bin/pragauto.cgi

A. Cockburn, Agile Software Development: The Cooperative Game, Agile Software
Development Series, 2001, pp 70-80.

E. Cutrell, M. Czerwinski, and E. Horvitz. Notification, Disruption, and Memory: Effects
of Messaging Interruptions on Memory and Performance. Proceedings of the IFIP TC.13
Conference on Human Computer Interaction (Interact 2001).

 90

A. Dahley, C. Wisneski, and H. Ishii. Water Lamp and Pinwheels: Ambient Projection of
Digital Information into Architectural Space. Summary of CHI ’98, (Los Angeles,
California, USA, April 1998), pp 269-270

M. Dalal’s code library. http://www.micheldalal.com

K. Dautenhahn, S. Woods, C. Kaouri, M. Walters, K. Koay, and I. Werry. What is a
Robot Companion – Friend, Assistant or Butler? In Proc. IEEE IROS (2005), 1488-1493.

C. Deng, P. Wilson, F. Maurer: FitClipse: An Eclipse Plug-in For Executable Acceptance
Test Driven Development, Proceedings of the 8th International Conference on Agile
Processes in Software Engineering and eXtreme Programming (XP 2007), Come, Italy
2007 (Springer).

C. DiSalvo., F. Gemperle, J. Forlizzi, and E. Montgomery. (2003). "The Hug: An
Exploration of Robotic Form for Intimate Communication." Ro-Man 2003 Conference
Proceedings, San Francisco, CA, October, 2003

E-Health Insider, “Flashing ‘orb’ to help medication adherence”. E-Health Insider, 04
September 2006. (Accessed March 2007)

M. Fowler, “Continuous Integration”. May 2006.
http://www.martinfowler.com/articles/continuousIntegration.html (Accessed March 2006)

B. Friedman, P. Kahn, and J. Hagman. Hardware Companions? – What Online AIBO
Discussion Forums Reveal about the Human-Robotic Relationship. Proc. Of CHI 2003,
ACM Press (2003), 273-280.

L. Halvorson, “Another Ambient Orb used for continuous integration status”. 30 June
2004. http://weblogs.asp.net/lorenh/archive/2004/06/30/170089.aspx (Accessed February
2007)

J. Heiner, S. Hudson, and K. Tanaka. The Information Percolator: Ambient Information
Display in a Decorative Object. In Proc. of UIST 1999, pp. 141-148.

H. Ishii, C. Wisnesky, S. Brave, A. Dahley, M. Gorbet, B. Ullmer, and P. Yarin.
ambientROOM: Integrating Ambient Media with Architectural Space (video). Summary
of CHI ’98, (Los Angeles, California, USA, April 1998), pp 173-174

JBoss Application Server. http://www.jboss.org/products/jbossas (Accessed December
2006)

JUnit. http://www.junit.org/ (Accessed January 2007)

Z. Khan. Attitudes towards intelligent service robots. NADA KTH, Stockholm 1998.

 91

C.D. Kidd, Sociable Robots: The role of presence and task in human-robot interaction.
MSc thesis, Massachusetts Institute of Technology, June 2003.

S. Kiesler, P. Heinds. “Introduction to this special issue on human-robot interaction”
Human Computer Interaction, 19, 1-8 (2004).

C. Larman, 2004. Agile & Iterative Development: A Manager’s Guide. Agile Software
Development Series. Addison-Wesley, USA. pp 292-295.

Manifesto for Agile Software Development, 2005. (Accessed June 2007)
http://agilemanifesto.org

D. McFarlane. Coordinating the Interruption of People in Human-Computer Interaction.
Proceedings of the IFIP TC.13 Conference on Human-Computer Interaction (Interact
2001).

M. Mori, “Bukimi No Tani (the uncanny valley)”, Energy, 7, pp. 33–35, 1970.

NUnit. http://www.nunit.org/ (Accessed May 2007)

R. Picard. Affective Computing. MIT Press, 1997.

Pragmatic Automation: Bubble, Bubble, Build’s in Trouble. 26 August 2004.
http://www.pragmaticprogrammer.com/pa/pa.html

L. Rising, N. S. Janoff, “The Scrum Software Development Process for Small Teams,”
IEEE Software, vol. 17, no. 4, pp. 26-32, Jul/Aug 2000.

P.N. Robillard, P. Kruchten and P. d’Astous 2003. Softare Engineering Process with the
UPEDU, Addison Wesley, USA.

D. Saff and M.D. Ernst. An Experimental Evaluation of Continuous Testing During
Development, In International Symposium on Software Testing and Analysis (ISSTA ’04),
pp76-85, Boston, USA, July 11-14, 2004.

A. Savoia. Developer Testing: eXtreme Feedback Devices for Software Development. 01
April 2004. http://www.developertesting.com/archives/month200404/20040401-
eXtremeFeedbackForSoftwareDevelopment.html

A. Savoia. On Java Lava Lamps and other eXtreme Feedback Devices. 26 August, 2004.
http://www.artima.com/weblogs/viewpost.jsp?thread=67492

M. Scheef, J. Pinto, K. Rahardja, S. Snibbe, and R. Tow. Experiences with Sparky, a
Social Robot. In Proc. Workshop Interactive Robot Entertainment (WIRE), Pittsburgh,
PA. 2000.

 92

Slashdot. Pragmatic Project Automation. 31 August 2004.
http://books.slashdot.org/article.pl?sid=04/08/31/1634258

J.F. Smart. Continuous Integration with Continuum. 30 May 2006.
http://today.java.net/pub/a/today/2006/05/30/continuous-integration-with-continuum.html

Sony AIBO home page. http://www.sony.net/Products/aibo/. (Accessed April 2006)

M. Swanson, “Automated Continuous Integration and the Ambient Orb”. 29 June 2004.
http://blogs.msdn.com/mswanson/articles/169058.aspx (Accessed March 2007)

S. Thrun. Spontaneous short term interaction with mobile robots in public places. In Proc.
IEEE Int. Conference on Robotics and Automation, Detroit, MI. pp10-15. May, 1999.

E. Tira-Thompson, N.S. Halelamien, J.J. Wales, and D.S. Touretzky
Proceedings of the Sixth International Conference on Cognitive Modelling, July, 2004,
pp. 390 - 391.

J. Wainer, D. Feil-Seifer, D. Shell, and M. Mataric. The role of physical embodiment in
human-robot interaction. In IEEE Proceedings of the International Workshop on Robot
and Human Interactive Communication, University of Hertfordshire, Hatfield, United
Kingdom, September 2006.

M. Weiser, J. S. Brown. "Designing Calm Technology", PowerGridJournal, v 1.01,
http://powergrid.electriciti.com/ 1.01, July 1996.

C. Wisneski, H. Ishii, A. Dahley, M. Gorbet, S. Brave, B. Ullmer, P. Yarin. Ambient
Displays: Turning Architectural Space into an Interface between People and Digital
Information. Proceedings of the International Workshop on Cooperative Buildings
(CoBuild ’98), Darmstadt, Germany, February 1998, pp 22-32.

x10 Firecracker power control kit. http://www.x10.com/automation/ck18a_s_ps32.html
(Accessed May 2006)

M. Xin., E. Sharlin Exploring Human-Robot Interaction Through Teleprescence Board
Games. In Proc. ICAT 2006, Lecture Notes in Computer Science, Volume 4282/2006,
Springer (2006).
http://www.cs.cmu.edu/~tekkotsu/media/tira-thompson-iccm04.pdf

J. Yamato, R. Brooks, K. Shinozawa, and F. Naya. Human-Robot Dynamic Social
Interaction. NTT Technical Review, Vol. 1, No. 6, September 2003.

J. Young, G. McEwan, S. Greenberg, and E. Sharlin.
 Aibo Surrogate - A Group-Robot Interface. Demo, Adjunct Proc ACM CSCW 2006.

 93

Appendix A: First Evaluation Post-Questionnaire

Please circle the answer to the questions below (You can circle more than one if it
applies)

1. What alerted you to the change in state of the build?

Lava lamps Robot

Other ________________________

2. How did you notice the change?

Sight Sound

Other ________________________

Please answer the following questions with a scale of 1 to 5, where 1 = strongly
disagree and 5 = strongly agree.

The sight of the lava lamps was a distraction.

1 2 3 4 5

The clicking sound of the lava lamps was a distraction.

1 2 3 4 5

The sound of the robot was a distraction.

1 2 3 4 5

The movement of the robot was a distraction.

1 2 3 4 5

The email was a distraction.

1 2 3 4 5

The robot contributed to a fun atmosphere.

1 2 3 4 5

 94

I can see the lava lamps from my desk.

1 2 3 4 5

My ability to perceive things going on around me was affected (eg. headphones, talking
with other people, etc)

1 2 3 4 5

 95

Appendix B: Second Evaluation Pre-Questionnaire

1. How long have you been working to develop AgilePlanner?

__

2. How much experience do you have with the following technologies:

Java: __

JUnit: __

Ant: __

3. Has a build status notification device been used for a project you have worked on?

 Yes No

If yes, please describe __

__

__

__

 96

Appendix C: Second Evaluation Explanation and Guidelines – Part I

Continuous Integration Notification User Study
Part I
Experiment Facilitator: Ruth M. Ablett
ICT 524, University of Calgary

Thank you for your participation in this study. Your participation is totally voluntary
and you can withdraw from this study at any time.

Experiment Summary

Everyone involved in this study is working to develop a different aspect of a shared
project, AgilePlanner. To make sure all the parts work together correctly, continuous
integration will be used. So when any developer commits code to the repository, the
code will be compiled together, deployed, and a series of tests will be executed. If
the state of the build changes (e.g. if it changes from success to failure, or from
failure to success), you will be alerted via email.

When you commit code, an email will be sent to you with an update of the build
status. If you committed code that caused the build to break, the email will contain
information about the breakage including which tests failed. This email will also be
sent to the project manager (Dr. Frank Maurer) and the experiment facilitator
(myself).

We will need a working email address from each participant (if you do not wish to
give out your email, a temporary free email account can be set up for you for the
duration of the study).

The Commit Mouse. There is a stuffed red ‘commit mouse’ in the lab. Its purpose is
to restrict who is able to commit the code. You may only commit if the red mouse is
at your desk, and you may only give it to someone else if the code you have
committed results in an intact build. If you are not in the lab, please check the build
via http://zeus.cpsc.ucalgary.ca:8080/anthill/ to make sure the build is intact before
committing your code.

Do not be afraid to commit new code! It is important that new code is committed
often enough to validate this study. As an incentive, we are offering a $10 University
of Calgary Micro Store gift voucher to the developer who makes the highest number
of unique commits this week. Also, we are offering a free pizza lunch at the end of
the study for all participants.

Specifics

Schedule. This study will take place on weekdays between 9:00am to 5:00pm.

During this time you are free to take any breaks you require, but please try to be in
the laboratory as much as possible during these hours.

Location. This study will take place in the north half of the ICT 524 lab.

 97

Participants. The participants will be a combination of graduate students working
part-time and interns working full-time on the project together.

Feel free to collaborate with other participants (pair programming, etc).

You may drop from this study at any time without penalty and your results
will not be used.

 98

Appendix D: Second Evaluation Post-Questionnaire – Part I (Developers)

1. Did you use an email notification program (ie. Google Talk, MSN messenger, etc)?

 Yes No

2. How were you most effectively notified to a build problem?

a) I received an email

b) I checked the build status page at http://zeus.cpsc.ucalgary.ca:8080/anthill/

e) I was alerted by another person

Please answer the following questions with a scale of 1 to 5, where 1 = strongly
disagree and 5 = strongly agree.

The email was a distraction.

1 2 3 4 5

My ability to perceive things going on around me was affected (eg. headphones)

1 2 3 4 5

I felt I was aware of the build status at all times.

1 2 3 4 5

 99

Appendix E: Second Evaluation Post-Questionnaire – Part I (Observers)

How were you most effectively notified re: the build status?

a) I checked the build status page at http://zeus.cpsc.ucalgary.ca:8080/anthill/

b) I was alerted by another person

Please answer the following questions with a scale of 1 to 5, where 1 = strongly
disagree and 5 = strongly agree.

My ability to perceive things going on around me was affected (eg. headphones)

1 2 3 4 5

I felt I was aware of the build status at all times.

1 2 3 4 5

 100

Appendix F: Second Evaluation Explanation and Guidelines – Part II

Continuous Integration Notification User Study
Part II
Experiment Facilitator: Ruth M. Ablett
ICT 524, University of Calgary

Thank you for your participation in this study. Your participation is totally voluntary
and you can withdraw from this study at any time.

Experiment Summary

Everyone involved in this study is working to develop a different aspect of a shared
project, AgilePlanner. To make sure all the parts work together correctly, continuous
integration will be used. So when any developer commits code to the repository, the
code will be compiled together, deployed, and a series of tests will be executed. If
the state of the build changes (e.g. if it changes from success to failure, or from
failure to success), you will be alerted via email, as well as a change in the lava
lamps situated in the center of the lab.

As before, when you commit code, an email will be sent to you with an update of the
build status. If you committed code that caused the build to break, the email will
contain information about the breakage including which tests failed. This email will
also be sent to the project manager (Dr. Frank Maurer) and the experiment
facilitator (myself).

In addition, lava lamps will be used to convey the state of the build. There are two
lava lamps, one red and one green, on top of one of the cabinets in the experiment
space. These lamps describe the state of the build – only one of them can be on at
any given time. If the green lamp is on (and the red lamp is off), the last build was
successful and all tests passed. If the red lamp is on (and the
green lamp is off), it means the last build failed and it must be
repaired.

Please familiarize yourself with the location of the lamps from
where you are sitting.

When this occurs, a soft but audible click can be heard. This
click is the sound of the receiver unit controlling power to the
lamps. Similarly, if the build is fixed, the red lamp will turn off,
and the green lamp will be turned on (lower right). This will
also be accompanied by the click.

The lamps can become quite hot during operation, so please
do not touch them.

The Commit Mouse. There is a stuffed red ‘commit mouse’ in the lab. Its purpose is
to restrict who is able to commit the code. You may only commit if the red mouse is
at your desk, and you may only give it to someone else if the code you have
committed results in an intact build. If you are not in the lab, please check the build
via http://zeus.cpsc.ucalgary.ca:8080/anthill/ to make sure the build is intact before
committing your code.

 101

Do not be afraid to commit new code! It is important that new code is committed
often enough to validate this study. As an incentive, we are offering a $10 University
of Calgary Micro Store gift voucher to the developer who makes the highest number
of unique commits this week. Also, we are offering a free pizza lunch at the end of
the study for all participants.

Specifics

Schedule. This study will take place on weekdays between 9:00am to 5:00pm.

During this time you are free to take any breaks you require, but please try to be in
the laboratory as much as possible during these hours.

Location. This study will take place in the north half of the ICT 524 lab.

The following is a map of the laboratory where the experiment will take place.

 102

Participants. The participants will be a combination of graduate students working
part-time and interns working full-time on the project together.

Feel free to collaborate with other participants (pair programming, etc).

You may drop from this study at any time without penalty and your results
will not be used.

 103

Appendix G: Second Evaluation Post-Questionnaire – Part II (Developers)

1. Did you use an email notification program (ie. Google Talk, MSN messenger, etc)?

 Yes No

2. How were you most effectively notified to a build problem?

 a) I received an email

b) I saw the lava lamps change

c) I noticed the lava lamp bubbles moving

d) I heard the click of the lava lamp controller

e) I was alerted by another person

f) I checked the build status page at http://zeus.cpsc.ucalgary.ca:8080/anthill/

Please answer the following questions with a scale of 1 to 5, where 1 = strongly
disagree and 5 = strongly agree.

The sight of the lava lamps was a distraction.

1 2 3 4 5

The clicking sound of the lava lamps was a distraction.

1 2 3 4 5

The email was a distraction.

1 2 3 4 5

The lava lamps contributed to a fun atmosphere.

1 2 3 4 5

I have a clear view of the lava lamps from my desk.

Blocked In clear view
1 2 3 4 5

 104

My ability to perceive things going on around me was affected (eg. headphones)

1 2 3 4 5

I felt I was aware of the build status at all times.

1 2 3 4 5

 105

Appendix H: Second Evaluation Post-Questionnaire – Part II (Observers)

How were you most effectively notified to a build problem?

a) I saw the lava lamps change

b) I noticed the lava lamp bubbles moving

c) I heard the click of the lava lamp controller

d) I was alerted by another person

e) I checked the build status page at http://zeus.cpsc.ucalgary.ca:8080/anthill/

Please answer the following questions with a scale of 1 to 5, where 1 = strongly
disagree and 5 = strongly agree.

The sight of the lava lamps was a distraction.

1 2 3 4 5

The clicking sound of the lava lamps was a distraction.

1 2 3 4 5

The lava lamps contributed to a fun atmosphere.

1 2 3 4 5

I have a clear view of the lava lamps from my desk.

Blocked In clear view
1 2 3 4 5

My ability to perceive things going on around me was affected (eg. headphones)

1 2 3 4 5

I felt I was aware of the build status at all times.

1 2 3 4 5

 106

Appendix I: Second Evaluation Explanation and Guidelines – Part III

Continuous Integration Notification User Study
Part III
Experiment Facilitator: Ruth M. Ablett
ICT 524, University of Calgary

Thank you for your participation in this study. Your participation is totally voluntary
and you can withdraw from this study at any time.

Experiment Summary

Everyone involved in this study is working to develop a different aspect of a shared
project, AgilePlanner. To make sure all the parts work together correctly, continuous
integration will be used. So when any developer commits code to the repository, the
code will be compiled together, deployed, and a series of tests will be executed. If
the state of the build changes (e.g. if it changes from success to failure, or from
failure to success), you will be alerted via email, as well as the deployment of
BuildBot, a software development monitor robot.

As before, when you commit code, an email will be sent to you with an update of the
build status. If you committed code that caused the build to break, the email will
contain information about the breakage including which tests failed. This email will
also be sent to the project manager (Dr. Frank Maurer) and the experiment
facilitator (myself).

BuildBot is a white Sony AIBO ERS-7M2. If a code check-in by a developer results in
a state change to build failure, BuildBot will make its way to that developer’s desk. If
the build is fixed, the robot will turn around (even halfway to the desk) and return to
its base station.

The network of white lines on the floor is the map BuildBot uses to get to each desk.
Please try not to leave obstacles on these lines. Also, if you need to leave your
workstation and you hear the robot moving, please be careful not to trip over it.

The Commit Mouse. There is a stuffed red ‘commit mouse’ in the lab. Its purpose is
to restrict who is able to commit the code. You may only commit if the red mouse is
at your desk, and you may only give it to someone else if the code you have
committed results in an intact build. If you are not in the lab, please check the build
via http://zeus.cpsc.ucalgary.ca:8080/anthill/ to make sure the build is intact before
committing your code.

Do not be afraid to commit new code! It is important that new code is committed
often enough to validate this study. As an incentive, we are offering a $10 University
of Calgary Micro Store gift voucher to the developer who makes the highest number
of unique commits this week. Also, we are offering a free pizza lunch at the end of
the study for all participants.

Specifics

 107

Schedule. This study will span a total of one week, on weekdays between Monday,
21 May and Monday, 28 May. The study will run for eight hours each day, from
9:00am to 5:00pm daily.

During this time you are free to take any breaks you require, but please try to be in
the laboratory as much as possible during these hours.

Location. This study will take place in the north half of the ICT 524 lab.

The following is a map of the laboratory where the experiment will take place.

Participants. The participants will be a combination of graduate students working
part-time and interns working full-time on the project together.

Feel free to collaborate with other participants (pair programming, etc).

 108

You may drop from this study at any time without penalty and your results
will not be used.

 109

Appendix J: Second Evaluation Post-Questionnaire – Part III (Developers)

4. Did you use an email notification program (ie. Google Talk, MSN messenger, etc)?

 Yes No

5. How were you most effectively notified to a build problem?

a) I received an email

b) I saw the robot moving

c) I heard the sound of the robot’s joints moving

d) I heard non-joint noises from the robot (ie. growling)

 e) The level of activity in the lab changed

f) I was alerted by another person who saw or heard the robot

 g) I checked the build status page at http://zeus.cpsc.ucalgary.ca:8080/anthill/

h) I was alerted by another person who checked the build status page

i) I was alerted by another person who received an email

Please answer the following questions with a scale of 1 to 5, where 1 = strongly
disagree and 5 = strongly agree.

The sight of the robot moving was a distraction.

1 2 3 4 5

The sound of the robot moving was a distraction.

1 2 3 4 5

The email was a distraction.

1 2 3 4 5

The robot contributed to a fun atmosphere.

1 2 3 4 5

 110

My ability to perceive things going on around me was affected (eg. headphones)

1 2 3 4 5

I felt I was aware of the build status at all times.

1 2 3 4 5

Which notification device did you prefer?

Email alone Lava Lamps BuildBot

Please explain:

 111

Appendix K: Second Evaluation Post-Questionnaire – Part III (Observers)

6. Did you use an email notification program (ie. Google Talk, MSN messenger, etc)?

 Yes No

7. How were you most effectively notified to a build problem?

a) I saw the robot moving

b) I heard the sound of the robot’s joints moving

c) I heard non-joint noises from the robot (ie. growling)

 d) The level of activity in the lab changed

e) I was alerted by another person who saw or heard the robot

 f) I checked the build status page at http://zeus.cpsc.ucalgary.ca:8080/anthill/

g) I was alerted by another person who checked the build status page

h) I was alerted by another person who received an email

Please answer the following questions with a scale of 1 to 5, where 1 = strongly
disagree and 5 = strongly agree.

The sight of the robot moving was a distraction.

1 2 3 4 5

The sounds (joints, growling, etc) made by the robot were a distraction.

1 2 3 4 5

The energy in the room was a distraction.

1 2 3 4 5

The robot contributed to a fun atmosphere.

1 2 3 4 5

 112

My ability to perceive things going on around me was affected (eg. headphones)

1 2 3 4 5

I felt I was aware of the build status at all times.

1 2 3 4 5

Which notification device did you prefer?

Email alone Lava Lamps BuildBot

Please explain:

 113

Appendix L: Participant Consent Form

 114

 115

 116

Appendix M: Ethics and Co-Author Approval

 117

 118

 119

 120

 121

 122

	MScThesis-preamble.pdf
	MScThesis

