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Abstract— Bubblegrams - a human-robot interaction (HRI)
technique - uses Mixed Reality (MR) to allow collocated hu-
mans and robots to interact directly by visually augmenting
their shared physical environment. Bubblegrams uses interactive
comic-like graphic balloons that appear above the robot to allow
for interaction between humans and robots. A key technical
challenge facing Bubblegrams is the detection of the location
of the robot within the user’s vision; the MR system needs this
information to place the bubble. To solve this, we applied a vision
algorithm based on Haar-like features to find and track the robot
in real time. This paper introduces the Bubblegrams interface and
details the vision algorithm used to detect and track the robot.

I. INTRODUCTION

With the rapid advancement of robot technology, the need
for effective human-robot interfaces is becoming clear and
pressing [1]. As robots become increasingly capable, we can
expect to find users sharing their everyday environments with
robots in various ways [2], [3]. Research in Human-Robot
Interaction (HRI) explores the various issues and problems
surrounding interaction with robots and attempts to develop
effective HRI interfaces [4].

Robots are a class of computers which are distinguished by
their dynamic presence in the physical world. A robot, unlike
the conventional computer which is primarily a digital entity,
is both a physical and digital entity; a robot is simultaneously
perceiving, functioning and interacting in both the digital and
physical realms. Current human-robot interfaces often fail to
integrate this duality and offer interaction which is restricted
to either the physical or the virtual domain; interaction can be
based on physical modalities such as speech or digital modal-
ities such as remote control software tools. This separation
can reduce levels of awareness [5] and ultimately hinder the
quality of interaction between humans and robots [6].

One solution to this problem is to use MR as an interaction
tool between humans and robots. MR is a technique which
tracks components of the physical world and augments them
with virtual data. This visual augmentation is commonly
accomplished by projecting images onto the environment or by
using a head-mounted display (HMD) to synthetically augment
the vision of the wearer [7]. We believe that MR can solve
many of the interaction problems mentioned above by allowing

Fig. 1. A user and robot interact through a Bubblegram.

the robot to dissolve the border between physical and virtual
interaction with humans; using MR, robots can superimpose
digital information directly onto users’ physical environments.
At the same time, humans can interact with digital information
directly, as if this information is an integral part of their
physical interaction space.

II. BUBBLEGRAMS

In this paper we present Bubblegrams - an MR interac-
tion technique that combines physical and virtual interaction,
allowing users to interact with robots simultaneously in the
digital and physical realms [8]. Bubblegrams (see Figure 1)
appear as visual cartoon-like bubbles floating above the robot.
The user wears MR goggles, using displays and a camera,
to view the Bubblegrams and can use Bubblegrams for direct
access to the robot’s status and functions. For example, in
a home-environment a robot which completed a cleaning
chore can present a smiley bubble above its head, showing



Fig. 2. The Bubblegrams architecture.

its satisfaction of fulfilling the task. It can also provide an
interface allowing the user to direct the robot further (“keep
cleaning”, “come and play with me”, etc.). In a search and
rescue operation, a human can use the Bubblegram to control
and send a robot into the next room or to call it back; this
Bubblegram could display a video feed from the robot.

Our current implementation integrates an Icuiti HMD and
webcam (as shown in Figure 2) as the MR interface, which is
powered by a tablet PC (Toshiba Portege) to offer portability
and wireless internet connectivity. In addition, the tablet PC’s
stylus interface can be used as one of many possible methods
to interact with Bubblegrams. For the robot, we are using a
Sony AIBO ERS-7 robot dog which generates Bubblegrams
and conveys them to the user system through a wireless net-
work connection. This connection is also the communication
medium for the various interaction techniques.

For Bubblegrams to be effective we need to physically
associate the location of the balloon with the robot whenever
the robot is in the user’s field of view; we need to track the
robot in real-time through the user’s MR vision channel. In this
paper we present our vision technique for real-time detection
and tracking of a Sony AIBO robot dog in a video sequence.
Our technique, based on the Viola and Jones’ “Rapid Object
Detection” method [9], considers the specific problems facing
robot detection in a Bubblegrams interaction session, achieving
high detection success. In the coming sections we present an
overview of research related to our efforts, we then describe
our approach to the AIBO detection problem in streaming
video, and detail our implementation and preliminary results.

III. RELATED WORK

MR has been introduced recently as a means of combining
digital information with the physical world for various appli-
cations such as interactive media (for example, the MagicBook
project [7] and the ARTag system [10]), modelling volumetric
data [11], [12], assisting with medical surgery [13] and as
a computer supported cooperative work (CSCW) interaction
theme and environment [14].

We can crudely classify MR techniques as either based
on HMD or projective visualisation. Projective visualisation
can be integrated seamlessly into a user’s entire field of view
allowing them to use their full natural vision capabilities. The
downside, however, is that projectors are still less portable
and flexible than HMDs, often being heavy and difficult
to move, and require a projection surface and appropriate
lighting. One can envision an MR environment based on
projection techniques in a dedicated space that is designed and
crafted specifically for the task. It is still difficult to implement
projection-based MR in an environment which the robot and
the user enter for the first time (for example, in a search
and rescue operation). HMDs offer portability and flexibility
since they are often lightweight and can be connected to a
wearable computer. However, HMDs can constrict the user’s
vision due to a relatively low field-of-view, low resolution and
possibly latency problems, potentially resulting in hand-eye
coordination issues and motion sickness.

While MR has been used for various interaction applications,
there has been a limited amount of work relating MR to human-
robot interfaces. MR was suggested for tasks of controlling
robots, both remotely and directly, increasing the human con-
troller’s awareness of the robots’ environment and actions [15],
[16]. For example, Milgram et. al.’s work in [15] uses MR with
a stereographic display to provide a level of tele-presence to a
human user controlling a remote robot. The MR elements here
are used to augment the user’s vision with various computer
calculations and information.

Bubblegrams’ uniqueness lies in it using MR not necessarily
for controlling the robot but also as a collaborative shared
medium that is used by both humans and robots to simul-
taneously interact in the digital and physical domains. We
see Bubblegrams as a dynamic interface that is linked to the
users and the robots rather than to the environment they share
at a certain time. Following, we designed Bubblegrams with
portability and flexibility in mind and decided to implement
our prototype using HMD MR visualisation.

Our real-time object detection technique adapts an algorithm
published in 2001 by Viola and Jones [9] and later expanded
by Lienhart [17]. The technique uses identification and classi-
fication of template style features as its method of detection. A
machine learning approach selects optimal template features,
resulting in an overall effective and efficient object detection
algorithm [9].

IV. VISION ALGORITHM

We use a feature-based approach to real-time object de-
tection [9]. Using a set of sample images, machine learning,



Fig. 3. Haar rectangle features shown relative to an enclosing window. The sum of pixels which lie within the white rectangles are subtracted from the sum
of pixels in the grey rectangles. Two-rectangle features are shown in (A) and (C). (D) shows a three-rectangle feature and (B) a four rectangle feature [9].

and a divide-and-conquer algorithm, this technique achieves
effective object classification. The features used are called
Haar-like features, which are rectangular and of varying size,
subdivided into white and black regions (see Figure 3).

Using the Haar technique results in more features per image
region than pixels. For example, a 24 x 24 window has 576
pixels but 45,396 features [9]; this is because the features
encapsulate intensity-distribution domain data about a region.
The value of a feature is calculated by subtracting the sum
of the pixel intensities in the white regions from the sum of
the pixel intensities in the black regions. The feature value,
in combination with the feature type, is used as the basis
for the feature matching. Figure 4 shows possible features
and positions on an AIBO; these features identify the AIBO’s
darker body above the lighter background and legs, and the
darker legs with lighter background in between.

The Haar-like feature detection system uses a cascade of
classifiers for object detection (see Figure 5) where each clas-
sifier within the cascade is composed of one or more features.
Classifiers which allow many false positives are placed at
the beginning of the cascade, with the following classifiers
being increasingly strict. This results in many image regions
being discarded early in the process, while only promising
regions are tested against the entire classifier cascade. The
speed advantages of this cascade, in combination with a novel
image representation technique called the integral image, are
what enable the detection technique to work in real-time [9].

Fig. 4. Possible Haar-like features on the AIBO. Notice how the first feature
(1) identifies a dark body over less dark legs and background, and the second
feature (2) identifies dark legs with less-dark background in the middle.

To build each classifier in the cascade, a training algorithm
tests all features against the sample image set. The result is an
optimum set of features for each classifier which best meets
the pre-decided parameters of the classifier (such as target
detection rate) [9]. The premise behind the training algorithm
is that the resulting detection rate of the classifier cascade is
approximately equal to the product of the detection rates of the
individual classifiers. The same is true for the false positive
rate. For example, if a cascade had six classifiers, and each
classifier has a 50% false positive rate, then the false positive
rate of the entire cascade is roughly 0.56 or 1.6%.

When training the algorithm, the user decides on the target
detection and false positive rates for each classifier, and the
number of classifiers in the cascade; the overall cascade
approximate rates are calculated as explained. This training
method has been shown to be extremely successful in doing
real-time face detection with a high accuracy rate [9].

V. DETECTING ROBOTS

Applying the Haar-like feature detection technique to Bub-
blegrams is further complicated as robots can be both mobile
and autonomous. This means that we can make very few
assumptions about their orientation, location, physical shape,
or environment. Robots can have dynamic and colourful
displays which can change their appearance, and may be
made out of a shiny material which may result in random
specular lighting effects on their surface. Given that the Haar-
like feature technique uses templates to match the shape and

Fig. 5. A Haar-like classifier cascade. At each detector (numbered bubbles)
image regions are either rejected (F) or pass (T) to the next step. Regions
which pass the final detector are positive hits. Detectors are increasingly
difficult, so many regions are quickly rejected earlier, while only promising
regions pass through many detectors.



intensity distribution of objects, these issues have serious
consequences on the effectiveness of the detector.

The approach that we use to apply the Viola and Jones
technique is to divide the detection problem into cases and to
add constraints to the robot and the settings. In doing this we
target particular circumstances or poses which are much less
complex than the general problem. Given the versatility of
robots, there are many different possible cases; this number
is drastically reduced by constraining the robot to certain
task-related poses and environments. The result of this is a
lower number of specific problems which are both practically
approachable and are more suitable to the Haar-like feature
technique than the more general problem. Although constraints
are added, this approach allows the problem to be general
enough to be effective in detecting robots in dynamic scenarios
and environments such as is needed by Bubblegrams.

VI. AIBO SPECIFICS

Detection of the AIBO robot dog is sensitive to the same
complications detailed in Section V. For example, the AIBO
can be sitting, standing on all fours or laying down, and can be
facing the user, facing away from the user, or facing sideways.
It can also have its head rotated or positioned up or down, can
open its mouth and wag its tail, can display an assortment of
lights, and can be situated on many surfaces.

In addition to characteristics of the Haar-like feature tech-
nique, typical Bubblegram interaction scenarios were consid-
ered for the division of the AIBO detection problem into
multiple cases and the selection of constraints. The resulting
cases limit robot shape-change, while allowing rotation only
so that the AIBO can change direction and ignoring acceptable
changes in scale and lighting conditions. The main constraint
placed on the AIBO is that it will always use the same walking
pose, whether it is walking or simply standing. While there
is movement in the legs when the robot is walking, this
eliminates major changes in shape associated with lying down,
sitting, etc. The AIBO is also currently restricted from using
its LED outputs in order to reduce the amount of change in
appearance. We currently only consider the black ERS-7 AIBO
on the same in-lab grey carpets, so that changes in contrast
between the AIBO and its environment can be minimised.

In an attempt to isolate the different major views of the
AIBO, the detection problem is divided into four cases: top,
side, front, and back. These cases correspond to interaction
using Bubblegrams, as a user can be facing an AIBO from
any direction or may be looking down at it. While the AIBO
is free to move its head for practicality reasons, the overall
change in appearance caused by this is much smaller than the
change caused by moving or rotating the entire body.

VII. IMPLEMENTATION

To realise the detection system, we used an implementation
of the Haar-like feature detection technique included in the
Intel Open Computer Vision library [18]. The main steps re-
quired when implementing the detector are: creating a database
of training images, training and creating classifier cascades

from the training images, applying the cascades to images of
AIBOs, and extending the system to work on video streams.
At each step there are implications of having multiple cases
rather than the standard single Haar-like classifier.

A. Image Library

The training of the detection classifiers requires an image
database consisting of both positive (with AIBO) and negative
(without AIBO) image samples. To collect these samples we
used video sequences of both the AIBO and the base environ-
ment; from these videos, we extracted more than 1300 positive
and negative images. The strategy for negative samples used in
this project was to use pictures of the environment where the
AIBO will be working. The positive images were finally sorted
into the four different classifier cases (top, front, back, side)
discussed in Section VI. This separation into classifier cases
is the key behind our detector, as it supports the wide range
of robotic views required for interacting using Bubblegrams.

B. Training

The selection of the target false-positive rate and the target
detection rate, as well as the number of classifiers in the
cascade, are crucial training parameters. While it may seem
reasonable to chose a very low target false-positive rate, low-
ering this rate increases the strictness of the classifier, forcing
it to reject many likely matches; increasing the target detection
rate will increase the false-negative rate, while decreasing
the target detection rate will increase false-positive rate. The
difference between these values is that increasing the false-
positive rates emphasises the positive samples, while adding
emphasis to the negative samples is done by lowering the target
detection rate. Considering Bubblegrams, false negatives are
preferred over false positives because the detector has many
chances per second to find the AIBO, while a false positive
could make the system start tracking a couch.

In order to emphasise false negatives, we selected a reason-
ably high target positive detection rate of 95% for the entire
cascade, and an overall cascade target false positive rate of
approximately 0.001%.

While the target rates discussed above focus on the cor-
rectness of the classifier cascade, the depth of the cascade
affects the speed of the classifier. For example, if target rates
do not change, a shorter cascade will generally be slower than
a longer one. To meet the same overall detection rates, each
classifier in the shorter cascade will have to be stricter than
the classifiers in the longer cascade; each classifier must be
tested against many image regions. However, a cascade which
is too long will force promising image regions through a large
number of classifiers, decreasing the overall speed of the cas-
cade. Ideally, the cascade length should be selected somewhere
between these two extremes in order to optimise speed. For
our application we put special focus on this parameter as we
have four classifiers running on each image. In combination
with other parameters specified here, we received best results
with cascades consisting of ten classifiers.



Fig. 6. Example of the Classifier Voting. On the left, various classifiers (using different colours) detect the AIBO is multiple locations. Voting is applied to
these regions to find a common consensus. The resulting single region is shown on the right.

C. Detection of AIBO in a Single Frame

The Intel implementation of the Haar-like detector has two
parameters that need to be set: window increase rate, and
minimum number of hits per window. The window increase
rate parameter determines the change in granularity between
image scans and the minimum number of hits per window
determines how many clustered finds are required to form a
positive hit. Changing these parameters changes the balance
between effectiveness and efficiency; we keep them as low as
possible while maintaining our speed requirements.

A key point of our implementation is that we use four
classifiers, AIBO top, front, side and back, to detect a single
AIBO. Ideally, these classifiers would be mutually exclusive
and only one classifier would detect at a time. However,
given the variance of a Bubblegrams interaction session, there
are times when multiple classifiers simultaneously detect the
AIBO, either due to similarities between the cases or when
a particular AIBO pose falls in between our defined cases.
To handle this we have implemented a voting scheme where
the positive hits from the various classifiers vote on the most
likely positive hit. The image region with the most number
of votes wins, and is selected as the most likely positive hit
(see Figure 6). In fact, this technique was so successful that
we increased the false positive rate of our classifiers slightly
to provide more hits to be used in the voting. This shows that
using multiple classifiers does not only allow for a wide range
of AIBO poses, but offers a detection overlap which is used
to increase accuracy.

D. AIBO in Streaming Video

Extending the AIBO detection system to a video sequence
offers temporal history as extra information which can be used
to improve detection performance and reliability.

We have implemented a tracking algorithm which makes
assumptions based on the dynamics of the Bubblegram tech-
nique: there is a maximum speed at which the AIBO will
move between frames and a maximum rate at which the AIBO
can change in scale. These parameters are set considering that

during Bubblegrams interaction, the human user is very likely
to keep their attention and focus on the robot.

We also integrate a simple smoothing algorithm which, in
the case where a tracked AIBO is lost, assumes that the AIBO
does not move. If the AIBO is not re-found after a number
of frames, the detector resorts to the single-frame algorithm
presented in Section VII-C. This fits with the Bubblegrams
scenario; while interacting with a robot it is very likely that
the robot and user will not move a great deal.

The tracking algorithm proved to be very helpful for Bub-
blegrams. We found that without it, a periodic false positive
would make the Bubblegram jump from the robot to another
location (such as a chair), then jump back. When trying
to interact with the Bubblegram, this made selection and
navigation extremely difficult. The addition of the tracking
algorithm greatly reduced this problem.

In order to maintain high detection rates for the video
stream, the input images were sub-sampled to half-resolution
and the detector granularity was decreased. The result was a
large gain in speed with minimal loss in effectiveness.

VIII. PRELIMINARY EVALUATION

Overall our detection mechanism proved to be successful in
its task of finding an AIBO in a Bubblegram video sequence.
For our preliminary evaluation, we placed the AIBO in a
lab environment and ran a random-walk program. A video
of the AIBO was recorded in various lab settings and from
multiple angles; the setting, camera angles and field of view,
all matched the way the AIBO is seen during a Bubblegrams
interaction session. Based on these sequences, we evaluated
the system over a two minute video portion which consisted of
both viewer and AIBO movement, varying distances, and busy
backdrops. The overall behaviour of the algorithm consists
of temporarily losing the AIBO when dramatic movements
or changes occur, and then consistently locking-in on the
AIBO when the Bubblegram interaction scene stabilises. In
addition to this, we found that this implementation is resilient
to occlusions and cluttered scenes.

We were pleased to find that during the mock interaction
sessions in the video, where movement was minimal, the



detection rate was nearly 100% accurate. Overall in our video
sequence tests, our system correctly detected the AIBO 79% of
the time, with false positives 14% of the time, and no detection
7% of the time. Much of the false positive and no detection
time was during motion where the AIBO was not entirely in
view, and the images were blurred.

Finally, we did an informal comparison between the detector
with multiple cases and tracking, and a single general case.
The single classifier was jumpy in comparison with the im-
proved detector and detected the AIBO much less consistently.
This suggests the success of our approach in effectively
utilising the Haar-like detection system with Bubblegrams.

IX. FUTURE WORK

The core future work for this project is to continue imple-
mentation of the various components of the Bubblegrams inter-
face. This includes completion of a networking framework, the
Bubblegrams graphics engine, and the integration of various
interaction techniques. Currently we are working on the visual
and flow design of several Bubblegrams interfaces for various
tasks including household robots, search and rescue tasks and
hospital robotic aids.

In terms of the vision algorithm presented in this paper,
there are several improvements which we plan to pursue.
The current image training set contains just over five hundred
images and would be expanded to provide a more complete set.
In addition, we plan to implement a more advanced tracking
algorithm based on the Kalman filter [19].

X. CONCLUSIONS

In this paper we presented our vision algorithm for Bub-
blegrams - a MR-based human-robot interaction technique; we
have shown how this detector can be used in demanding and
dynamic Human-Robot Interaction scenarios 7. Furthermore,
the effectiveness of the detector was significantly increased
by constraining the problem and breaking it into cases. These
cases not only allowed the specific targeting of various de-
tectors, but gave an amount of detector overlap which was
used to increase accuracy. Furthermore, temporal information
was used from the video stream to further restrict and smooth
out the detection, improving the quality of the real-time
interaction.
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