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ABSTRACT
As the field of robotics matures, robots will need some
method of displaying and modeling emotions. One way
of doing this is to use a human-like face on which the
robot can make facial expressions that correspond to its
internal emotional state. Yet the connection between a
robot’s emotional state and its physical facial expression
is not an obvious one; in particular, there is no princi-
pled method of mapping changes in emotional states to
changes in facial expressions. We give a philosophical
analysis of the problem and show that it is rooted in the
vagueness of robot emotions. We then outline several
methods that have been used in the philosophical lit-
erature to model vagueness and propose an experiment
that uses our humanoid robot head to determine which
philosophical theory is best suited to the task.

INTRODUCTION
It has been argued that the ability to display emotions
on a human-like face is both an important and neces-
sary step in making robots and computer agents more
accessible to the general public [1, 7]. The emotional
model for a robotic face will have two key components:
a mapping of emotional states to facial positions and a
method of transitioning between different pairs of emo-
tional states and facial positions. For example, we map
‘surprise’ on our robot to a raising of its eyebrows and
an opening of its mouth. We say the robot is ‘not
surprised’ when its eyebrows fall and its mouth closes.
Some method is now needed of transitioning between
‘surprised’ and ‘not surprised’ that both displays the
transition on the robot’s face and captures the emo-
tional state of the robot throughout the transition.

We begin by describing the philosophical problem of
vagueness and show how it is relevant to the domain of
robot emotions; in particular, we argue, it is the vague-
ness of robot emotions that prevents us from finding
a principled method of selecting a particular facial po-
sition or gesture to use as the boundary between two

different emotional states. We then outline an experi-
ment designed to test the validity of our approach, and
give a detailed description of our interface—a humanoid
robot head.

A THEORETICAL ACCOUNT OF VAGUENESS IN ROBOT

EMOTIONS
Suppose we want to build an advanced robotic office
assistant that, among other things, delivers mail to of-
fice employees. This hypothetical robot will have a face
capable of displaying emotions to its users. For the
remainder of this paper, we denote emotional states
by a boolean variable Sα, whose value is returned by
the function t. We use Sh to denote the emotional
state ‘happy’ and ¬Sh to denote the emotional state
‘not happy’. Thus, the robot is ‘happy’ if and only
if t(Sh) = 1; the robot is ‘not happy’ if and only if
t(Sh) = 0. We write P (v̂) to denote the robot’s fa-
cial gesture, or position, as given by a vector v̂; that is,
the robot is said to be in position P (v̂) when its servos
are set to the values prescribed by the value of v̂. To
denote the robot’s emotional state α, given a facial ges-
ture or position expressed as a vector v̂, we use Sαv̂

. We
write |v̂| = i to express v̂ in terms of i, which is some
complex value generated by the positions of the robot’s
many servos.

We define four facial positions: Pv̂1 and Pv̂2 show the
robot as being clearly ‘happy’, where |v̂1| = 100 and
|v̂2| = 85; Pv̂4 and Pv̂5 show the robot as being clearly
‘not happy’, where |v̂4| = 15 and |v̂5| = 0. We also
define v̂3, such that |v̂3| = 50. For example, the robot
might be smiling widely in P (v̂1) and slightly less so in
P (v̂2); however, when in P (v̂4), the robot might frown
slightly.

Consider a vector v̂6, where |v̂6| = n. When n = 100
v̂3 = v̂6, and t(Shv̂6

) = 1. Each time the robot success-
fully completes a task we increase n to make the robot
look happier, and each time the robot fails to complete
a task we decrease n to make the robot look sadder. For
example, if the robot spills coffee on a human we might
set n = n− 70, but if the robot delivers an envelope to
the wrong employee we might only set n = n− 1.

The Boundary Between Sh and ¬Sh



The fundamental problem with this Boolean model is
that we cannot determine the n that marks the loca-
tion where the robot changes from state Sh to state
¬Sh. Suppose the face is in position Pv̂3. We are just
as justified in holding that position Pv̂3 corresponds to
state ¬Sh as we are in holding that it corresponds to
state Sh. We do not want to arbitrarily assign Pv̂3 to
Sh or ¬Sh, as to hold that position Pv̂3 is the precise
cut-off between emotional states Sh and ¬Sh is to hold
that while some large number of negative events may
occur to move the robot’s face from position Pv̂1 to
Pv̂3, the robot’s emotional state remains constant at
Sh; yet if one small, seemingly insignificant event causes
the robot’s face to move past position Pv̂3 and toward
Pv̂4, the robot’s emotional state will suddenly change
from Sh to ¬Sh. This is clearly counterintuitive as,
among healthy humans, small, insignificant actions do
not cause sudden changes in emotional states.

Suppose we use Pv̂3 as the boundary between Sh and
¬Sh. Recall that the face of the office robot is in posi-
tion Pv̂6 and suppose that, at a given point during the
day, n = 85: since, in this case, v̂6 = v̂2, we know the
robot is ‘happy’. If the robot spills coffee on an em-
ployee then n = 85 − 70 = 15 and v̂6 = v̂4; thus, the
robot becomes ‘not happy’. This result conforms to our
intuition that if a person is happy and she makes a big
mistake, such as spilling coffee on a co-worker, she will
become unhappy.

Now suppose n = 85 and the robot brings a piece of mail
to the wrong employee: n = 85 − 1 = 84. This result
also conforms to our intuitions: if a person is happy and
makes a small mistake, such as bringing a piece of mail
to the wrong person, they don’t stop being happy. Now
suppose this occurs 36 times: first n = 84 − 1 = 83,
then n = 83− 1 = 82, and so on, until n = 50− 1 = 49.
When the robot incorrectly delivers the mail for the 35th

time it is still ‘happy’; but because n = 50, its smile will
have almost completely disappeared. However, once the
robot delivers mail to the wrong person for the 36th

time, its mood will immediately change from ‘happy’
to ‘not happy’, even though its physical appearance —
the diminished smile that is visible when n = 50 — has
changed by an imperceptibly small amount, namely by
one unit, such that n = 50−1 = 49. The problem is that
while the physical transition between the appearance of
‘happy’ and the appearance of ‘not happy’ is gradual,
as it is with humans, the transition between Sh and
¬Sh is not: despite its physical appearance, the robot
will believe it is as happy when n = 51 as it is when
n = 85. When n is decremented by one unit the change
in facial position will be hardly noticeable, yet its mood
instantaneously changes from ‘happy’ to ‘sad’: from Sh

to ¬Sh.

The Logic
The problem in the above example lies in our belief
that one insignificant event does not make the differ-
ence between emotional states. The linguistic vague-

ness that philosophers typically study works similarly:
words like ‘bald’ are said to be vague because one hair
does not seem to make the difference between baldness
and non-baldness. Let Shv̂6n

indicate that the robot is
in state Sh and in position Pv̂6, given the value of n in
v̂6. Thus, t(Shv̂6100

) = 1, since when n = 100, v̂6 = v̂1.
In boolean logic, we symbolize our belief that one in-
significant event does not make the difference between
Sh and ¬Sh as follows: ∀m(Shv̂6m

⊃ Shv̂6m−1
). Yet

given this, we can prove that there is no n that marks
the cut-off between Sh and ¬Sh (see Figure 1).

1 Shv̂6100

2 ∀m(Shv̂6m
⊃ Shv̂6m−1

)

3 Shv̂6100
⊃ Shv̂699

∀E, 2

4 Shv̂699
⇒E, 1, 3

...
...

2, 000 Shv̂61
⇒E,

...

2, 001 Shv̂61
⊃ Shv̂60

∀E, 2

2, 002 Shv̂60
⇒E, (2, 000), (2, 001)

Figure 1. Proof: if the robot is ‘happy’ when in
Pv̂6100

, then it is ‘happy’ when in Pv̂60

Thus, having started with an obviously true premise,
namely Shv̂6100

, we can conclude that when m = 0 the
robot is still ‘happy’; t(Shv̂60

) = 1. We could construct
a similar argument, starting with ¬Shv̂60

and assuming
∀m(¬Shv̂6m

⊃ ¬Shv̂6m+1
), to show that when m = 100

the robot is still ‘not happy’: t(¬Shv̂6100
) = 1. We have

thus been able to prove two seemingly contradictory
facts. We proved both that the robot is ‘happy’ when
m = 0 and its facial expression is ‘not happy’, and that
the robot is ‘not happy’ when m = 100 and its facial
expression is ‘happy’. While boolean logic requires that
we find some vector, and thus some value of m, to use as
the boundary between Sh and ¬Sh, philosophers have
developed several theories of vagueness that we use to
develop a framework for the proper modeling of robot
emotions.

PHILOSOPHICAL THEORIES
Typically, philosophical theories of vagueness give both
a metaphysical account of the phenomenon of vague-
ness and an account of our linguistic use of vague predi-
cates. While our work is focused on modeling emotions
in practical applications, the metaphysical content of
these theories should not be disregarded: as the field of
human-robot interaction matures it is likely that schol-
arship will focus not only on the results achieved by
a given method but on the correctness of using that



method in the first place. In this section we present
an overview of several theories of vagueness that seem
particularly well-suited for the task of modeling robot
emotions and controlling facial expressions; it is not our
intent to give a detailed account of the philosophical lit-
erature. References for further reading are provided.

3-Valued Logics
For any variable P in boolean logic, either P is true or P
is false. By introducing additional truth values, many-
valued logics allow P to take other values. Many-valued
logics are extensions of classical logic and always have
‘true’ and ‘false’ as truth values which behave, in re-
lation to one another, as they would in classical logic
[3, p. 5]. We use a  Lukasiewicz 3-valued logic, which
has the following truth values: [0, 1

2 , 1]. A truth value
of 1

2 represents an indeterminable truth value that is
assigned to that which is possible and exists between
‘the true’ and ‘the false’; that is, 1

2 is truer than what
is false but falser than what is true [8]. Given two vari-
ables P and Q, negation, conjunction, disjunction, and
implication are defined thusly:

t(¬P ) = 1− t(P )
t(P ∧Q) = min(t(P ), t(Q))
t(P ∨Q) = max(t(P ), t(Q))
t(P → Q) = min(1, 1− t(P ) + t(Q))

To model emotions in a 3-valued logic, we first de-
termine which positions clearly correspond to Sh and
which clearly correspond to ¬Sh. There are two ways
that a 3-valued logic represents states that are neither
clearly Sh nor clearly ¬Sh: on the truth gap theory,
these borderline cases are neither Sh nor ¬Sh while on
the truth glut theory they are both Sh and ¬Sh. On
both truth gap and truth glut theories we have the fol-
lowing truth assignments: t(Shv̂6100

) = 1, t(Shv̂650
) = 1

2 ,
and t(Shv̂60

) = 0. Recall that in boolean logic, if the
robot is not in state Sh, such that t(Sh) = 1, then the
robot must be in state ¬Sh, such that t(Sh) = 0. On
the 3-valued approach, however, a robot that is not in
state Sh need not be in state ¬Sh: when t(Sh) = 1

2
the robot is not in state Sh nor is it in state ¬Sh. For
more information on 3-valued logics and vagueness, see
[8],[9], and [10].

Epistemicism
Epistemicism [11] holds that words like ‘tall’ and ‘bald’
have sharp boundaries that are necessarily unknowable
to us. If we extend this view to emotions like ‘happy’,
we must hold that when the robot is in Pv̂3 it is really
either in state Sh or ¬Sh — but we can never know
which state it truly belongs in. Of course, we can pro-
gram the robot to treat Pv̂3 as though it corresponds to
Sh, but this will yield the same sudden change in emo-
tional state that we are trying to avoid. The strengths
of this theory are primarily metaphysical, and the only
practical advantage it offers is that it allows us to model
vagueness, and emotions, in boolean logic.

To model emotions according to epistemic principles, we
need to hold that there are precise facial expressions —
some of which are unknown to us — that correspond to
the robot appearing happy; all other facial expressions
correspond to the robot looking unhappy. Thus, Pv̂1
corresponds to the robot looking happy and Pv̂5 corre-
sponds to the robot looking unhappy. Yet according to
the epistemicist, we have no way of knowing what the
actual position of the cut-off is: we only know that it
exists. Because epistemicism was developed for linguis-
tic vagueness, many complications arise when attempt-
ing to model robot emotions using this theory. One
possibility is to have the robot inform the user that it
does not know whether it is happy or sad when in Pv̂3;
another is to have the robot stop expressing emotion al-
together when it is in indeterminate positions like Pv̂3
and continue expressing emotions when it returns to a
position where its emotional state is clear, such as Pv̂2.

Fuzzy Logic
Fuzzy logic has been proposed by philosophers and used
by computer scientists to model linguistic vagueness;
computer scientists have already developed several emo-
tional models based on fuzzy logic [4, 5]. Fuzzy logic is
an infinitely-valued logic, with truth values represented
on the interval of real numbers [0, 1]. Variables, and in
this case emotional states, are represented by fuzzy sets
and objects in the domain are members of each set to
varying degrees; the degree to which a particular vari-
able belongs in the set TRUE is a variable’s degree
of truth. Negation, conjunction, and disjunction are
defined as they are in 3-valued logic, and implication
typically is as well, although other definitions are some-
times used. Thus, we initially know that t(Shv̂6100

) = 1
and t(Shv̂60

) = 0. We map the other values of i to truth
values using a membership function. Suppose the robot
is clearly happy when i > 80 and clearly unhappy when
i < 30. One possible membership function is:

if i < 30 then t(Shv̂6i
) = 0

if 30 ≤ i ≤ 80 then t(Shv̂6i
) = i−30

50

if i > 80 then t(Shv̂6i
) = 1

Using this function, the robot’s emotional state changes
along with its smile. When i = 70 the robot is ‘happy’
to degree 0.8 and ‘not happy’ to degree 0.2, t(Shv̂670

) =
0.8; when i = 60 the robot is ‘happy’ to degree 0.4
and ‘not happy’ to degree 0.6, t(Shv̂660

) = 0.4. More
information on fuzzy logic and fuzzy set theory can be
found in [2] and [6].

THE INTERFACE
Our interface is a robot head (see: Fig. 2) developed by
the authors from Portland State University. Although
we illustrated the vagueness of robot emotions in the
previous section with ‘happy’, we found that the head
worked much better when expressing surprise; thus, we
chose to implement ‘surprise’ for the purposes of our ex-
periment. This decision does not affect our theoretical



grounding. Instead of an office assistant, suppose we
want to build a robot that will spend time with the el-
derly. Among other things, this robot will watch movies
along with a human companion. There are many differ-
ent emotions that such a robot would need to be capable
of expressing: it would need to get happy and sad at
the right times, it would need to dislike ‘bad’ characters
and empathize with ‘good’ ones, and it would need to
get ‘surprised’ when something frightening or startling
occurred.

Figure 2. Our Humanoid Interface

Only the head is robotic: the torso and hands are props
used to enhance the robot’s realism in our experiments.
The robot head we are using consists of many parts,
each of which is controlled by a servo. The robot con-
sists of twelve servos, including:

• four which control the eyebrows, denoted as Eb1 . . . Eb4

(see: Fig. 3.1).

• four which control the face, denoted as Fa1 . . . Fa4

(see: Fig. 3.2).

• one which controls both eyes, denoted as Ey (see: Fig
3.3).

• one which controls the tongue, denoted as To (see:
Fig 3.4).

• one which controls the mouth, denoted as Mo (see:
Fig 3.5).

• one which controls its upper lip, denoted as Ul (see:
Fig 3.6).

Each servo has a different amplitude of real movement
which is scaled to a value between 0 and 100. We de-
note the scaled position of a servo α by P (α). For ex-
ample, P (Fa2) = 50 means that the second facial servo
is in position 50. The following figure shows each of the

robot’s servos; when necessary, a dot has been placed
to indicate a servo’s position.

Figure 3. Servo Positions

I use scripts to control the robot’s movement. In our
experiment, scripts cause the robot to look ‘surprised’
while the user is watching the robot. Once the script
finishes, the robot will hold its ‘surprised’ position for
a predetermined period of time. Once this time has
passed, the robot’s face returns to its normal state. We
denote the scaled position of a servo α prior to the run-
ning of a script as P (α(old)); we use P (α(new)) to de-
note the servo’s position attained after a given script
has completed but before the face has returned to nor-
mal. If no subscript is used, then P (α) denotes a servo’s
‘new’ or current position.

To denote the level of ‘surprise’ expressed by a given
script σ we use a vector v̂. We let v̂ = {α, β, χ, δ, ε, ζ, η}
and define |v̂| = α ∗ w1 + β ∗ w2 + χ ∗ w3 + δ ∗ w4 +
ε ∗ w5 + ζ ∗ w6 + η ∗ w7. Note that while w1 . . . w7

are arbitrary weights, v̂ nonetheless reflects the level of
‘surprise’ shown by our robot face.

• α reflects upward movement of the eyebrows, where
α = Σ(P (Ebi(new)) − P (Ebi(old))), when 1 ≤ i ≤
4 and P (Ebi(new)) > P (Ebi(old)).

• β denotes the final position of the eyebrows, where
β = ΣP (Ebi) where 1 ≤ i ≤ 4.

• χ returns a fixed value if the eyes move a sufficiently
large distance, if |P (Ey(new))− P (Ey(old))| > 5.

• δ reflects the movement of the upper lip, where δ =
P (Ul) if P (Ul(new)) 6= P (Ul(old)).

• ε reflects downward movement of the mouth, where
ε = P (Mo(new))− P (Mo(old)), if P (Mo(new)) >
P (Mo(old)).

• ζ denotes the final position of the mouth, where ζ =
P (Mo).

• η reflects the amount of time that a script σ’s final
positions are held.



SELECTING A THEORY
Because we are not currently interested in the meta-
physical claims of the theories described in the previ-
ous section, we must use some other criterion to de-
termine which theory is best suited for mapping facial
expressions to a robot’s emotional state. Throughout
this section we use a Boolean variable Ss, whose value
is returned by the function t, to model the emotional
state ‘surprise’; we use ¬Ss to denote the state ‘not
surprised’. Thus, the robot is ‘surprised’ if and only if
t(Ss) = 1 and the robot is ‘not surprised’ if and only if
t(Ss) = 0.

Each theory of vagueness treats positions that are nei-
ther clearly Ss nor clearly ¬Ss differently: on the 3-
valued approach such a position corresponds either to
both Ss and ¬Ss or to neither Ss nor ¬Ss, while on
the fuzzy logic approach it partially corresponds to Ss

and partially corresponds to ¬Ss. On the epistemic
view it corresponds to either Ss or ¬Ss, but it is im-
possible for us to know which. We propose conducting
experiments with a robot face to test user’s perceptions
of emotions that are not clearly ‘surprised’ nor clearly
‘not surprised’ to see how they perceive this borderline
area.

Our experiment is being conducted in parallel with a
separate experiment on vagueness in natural language.
Participants will choose to participate in an experiment
on natural language; it is only when they arrive to par-
ticipate in the experiment that they will see the robot.
At this point, participants will be told that they are
doing the experiment with a co-participant—a robot.
Both the human and the robot will be completing two
tasks: one the same, one different. The human partici-
pant will be told that both participants will complete a
questionnaire on their use of vague predicates in natu-
ral language, with the goal of generating data about the
differences between robot and human vocabulary. The
human will be told that the robot, as part of its second
task, will be shown images at random intervals. The
human’s second task will be to describe the emotional
state of the robot after the robot appears ‘surprised’
from the images it sees. The human participant will
complete questions on vague predicates while thinking
that the robot is doing the same thing.

Every few questions the participant will be notified,
via their computer screen, that the robot is about to
see an image. At this point the robot will be pro-
grammed to act startled. Once the reaction is complete,
a screen will appear asking the participant to describe
the robot’s emotional state. Once the participant an-
swers this question, they will continue answering ques-
tions about vague predicates. The user will be able to
choose one of the following options when describing the
robot’s emotional state:

• surprised

• not surprised

• surprised and not surprised

• neither surprised nor not surprised

• either surprised or not surprised, but unsure of which

• partially surprised and partially not surprised

The first two options conform to a traditional boolean
emotional model, while the last four are used to repre-
sent the theories of vagueness that were described in the
previous section. We hypothesize that users will choose
one of the first two options when the robot’s state is
obvious; when the state is difficult to determine, we be-
lieve users will choose one of the last four options. If
a significant percentage of users choose one of the last
four options when the robot is in an intermediate state,
then we will have evidence indicating which theory of
vagueness can be best used to control robot emotions
and facial expressions. If the data shows that users as-
sociate intermediate positions with a given theory of
vagueness, then we will use literature on that theory to
develop a more detailed model of robot emotions.

CONCLUSION
In this paper we reported our efforts to model synthetic
emotions in a humanoid robot head. We described the
philosophical problem of vagueness and showed how it
poses a practical problem for the implementation of
emotions in Boolean logic. We presented three philo-
sophical theories of vagueness that could be used to
accurately model robot emotions and map changes in
emotional states to physical gestures. Finally, we de-
scribed a user study—that we are currently conducting—
that will allow us to evaluate the viability of our ap-
proach and the effectiveness of these theories. We hope
that this work will allow researchers in human-robot in-
teraction to explore the strengths of non-Boolean logics
in the domain of robot emotions.
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